GA codes for linear regression equation
조회 수: 7 (최근 30일)
이전 댓글 표시
How can i code an optimization GA code for a multiple regression equation in the form Y=Ax1 +BX2 + C;
where X1 and X2 are variables and A,B,C are the constants for optimization.
Thanks in advance
댓글 수: 0
채택된 답변
Abdolkarim Mohammadi
2020년 8월 21일
Although ga() can fit multiple linear regression models, it is recommended to use regress() since it is dedicated to linear regression and is faster and more accurate than ga(). By the way, you can get this code from here:
https://www.mathworks.com/matlabcentral/answers/567840-genetic-algorithm-to-optimize-the-variable-of-linear-regression-a-b1-b2#answer_468399
댓글 수: 0
추가 답변 (1개)
Star Strider
2020년 8월 21일
Since the fitness function must return a scalar value to the ga function, I would do something like this:
x = [x1(:) x2(:)]; % Matrix Of Column Vectors
y = y(:); % Column Vector
model = @(b,x) b(1).*x(:,1) + b(2).*x(:,2) + b(3); % Define Linear Regression Model
ftns = @(b) norm(y - model(b,x)); % Fitness Function
The ga function would then return the optimised values for the ‘b’ parameters. This approach can be used with any regression equation.
I have not tested this function specifically, however it should work.
댓글 수: 0
참고 항목
카테고리
Help Center 및 File Exchange에서 Linear Regression에 대해 자세히 알아보기
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!