How to index Neural Network for loop

조회 수: 5 (최근 30일)
Justin Hayes
Justin Hayes 2020년 8월 1일
댓글: Justin Hayes 2020년 8월 7일
I would like to run this loop 4 times for the InitialLearnRate values of 0.0001, 0.001, 0.01, and 0.1. I would like to index the loop as well so I can compare the fracCorrect for each loop. Thank you!
InitialLearnRate = [0.0001,0.001,0.01,0.1]
augmentedDS_test = zeros(1,length(InitialLearnRate))
predictions = zeros(1,length(InitialLearnRate))
fracCorrect = zeros(1,length(InitialLearnRate))
for i = InitialLearnRate
imageDS = imageDatastore('deeplearning_course_files','IncludeSubfolders',true,'LabelSource','foldernames');
[wormTrain,wormTest] = splitEachLabel(imageDS,0.2); % takes x images from
augmentedDS_train = augmentedImageDatastore([227 227],wormTrain,'ColorPreprocessing','gray2rgb')
augmentedDS_test = augmentedImageDatastore([227 227],wormTest,'ColorPreprocessing','gray2rgb')
net = alexnet;
layers = net.Layers
fc = fullyConnectedLayer(2);
layers(end-2) = fc;
layers(end) = classificationLayer;
options = trainingOptions('sgdm','InitialLearnRate',i,'Momentum',0.1,'MaxEpochs',15)
[wormnet,info] = trainNetwork(augmentedDS_train,layers,options);
predictions = classify(wormnet,augmentedDS_test);
wormActual = wormTest.Labels;
numCorrect = nnz(predictions == wormActual);
fracCorrect = numCorrect/numel(predictions)
end
confusionchart(wormTest.Labels,predictions)
plot(info.TrainingLoss)

채택된 답변

Anshika Chaurasia
Anshika Chaurasia 2020년 8월 6일
You can consider trying indexing as given below:
for i = 1:length(InitialLearnRate)
....
options = trainingOptions('sgdm','InitialLearnRate',InitialLearnRate(i),'Momentum',0.1,'MaxEpochs',15)
....
fracCorrect(i) = numCorrect/numel(predictions)
...
end

추가 답변 (0개)

카테고리

Help CenterFile Exchange에서 Deep Learning Toolbox에 대해 자세히 알아보기

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by