Is it possible to train LSTM Network without a Dataset?
    조회 수: 3 (최근 30일)
  
       이전 댓글 표시
    
    Huzaifah Shamim
 2020년 7월 23일
  
    
    
    
    
    편집: Huzaifah Shamim
 2020년 7월 27일
            In the following paper, they utilize Reinforcement Learning and within it, also use an LSTM network. On page 3, they say that they use some kind of loss function that allows the training of the LSTM network without a dataset. I was wondering how that could be possible? If someone could explain, I would greatly appreciate it.
댓글 수: 0
채택된 답변
  Emmanouil Tzorakoleftherakis
    
 2020년 7월 27일
        In the paper they mention "Although a readily available dataset is required to train an LSTM network, we devised an efficient way to tackle this challenge utilizing the experiences stored in the replay memory of the Q-network".
This is how training works with experience buffers in RL - you don't have data at the beginning, then you run simulations and store the data you collect in the experience buffer, which you are then using to train the policy. So the data is not "readily available" but you are still sing your experience buffer.
댓글 수: 1
추가 답변 (0개)
참고 항목
카테고리
				Help Center 및 File Exchange에서 Deep Learning Toolbox에 대해 자세히 알아보기
			
	Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!

