focal Loss Layer evaluation
조회 수: 4 (최근 30일)
이전 댓글 표시
I have created simple CNN for semantic segmentation and repalced last layer with focal loss layer to use focal loss fucntion instead of pixel classification function.
Network = [
imageInputLayer([256 256 3],"Name","imageinput")
convolution2dLayer([3 3],128,"Name","conv_1","BiasLearnRateFactor",2,"Padding","same")
reluLayer("Name","relu_1")
batchNormalizationLayer("Name","batchnorm")
transposedConv2dLayer([3 3],2,"Name","transposed-conv","Cropping","same")
reluLayer("Name","relu_3")
softmaxLayer("Name","softmax")
focalLossLayer(2,0.25,"Name","focal-loss")];
after training the network, I used,
pxdsResults = semanticseg(imdsTest,Trained_network, ...
'MiniBatchSize',5, ...
'WriteLocation',tempdir, ...
'Verbose',false);
for test images but I got error the following error;
Error using semanticseg>iFindAndAssertNetworkHasOnePixelClassificationLayer (line 584)
The network must have a pixel classification layer.
Error in semanticseg>iParseInputs (line 377)
pxLayerID = iFindAndAssertNetworkHasOnePixelClassificationLayer(net);
Error in semanticseg (line 216)
params = iParseInputs(I, net, varargin{:});
Now its obvious that last layer must be pixel classification layer. but if I am using focal loss layer how to evaluate this?
댓글 수: 0
채택된 답변
Bhargavi Maganuru
2020년 7월 6일
Hi,
Focal loss layer to a semantic segmentation or object classification deep learning network has been added in future release 2020b. In the earlier versions, you can use either PixelClassificationLayer or DicePixelClassificationLayer or a ClassificationLayer as the last layer in the network.
댓글 수: 3
Bhargavi Maganuru
2020년 7월 6일
You can use ClassficationLayer as the last layer in the network. For more information about ClassficationLayer, refer https://www.mathworks.com/help/deeplearning/ref/classificationlayer.html#responsive_offcanvas
추가 답변 (0개)
참고 항목
카테고리
Help Center 및 File Exchange에서 Image Data Workflows에 대해 자세히 알아보기
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!