Linear-log regression model (curve fitting)

조회 수: 2 (최근 30일)
Ahmad Hani
Ahmad Hani 2020년 6월 16일
댓글: Ameer Hamza 2020년 6월 17일
Dear all
I reask this question with more details
I have this data
x= [50;81;73;77;127;140;122;125;140;145;180;185;178;96;83;192;182;120;127];
y= [122;126;121;123;135;130;117;119;125;125;135;135;140;140;147;147;144;141;139];
y(x) = α + β10 log10(x) + ξ, : ξ ~ N(0, σ^2), random variable that accounts for shadowing variation modeled with normal distribution and standard deviation (Specifically, is a random variable that accounts for shadowing variation modeled with normal distribution and standard deviation σ, assumed equal to the standard deviation of the regression residuals).
How can I use curve fitting to find the values of α, β and ξ,
Expected Output fitting plot

채택된 답변

Ameer Hamza
Ameer Hamza 2020년 6월 17일
Try this
x = [50;81;73;77;127;140;122;125;140;145;180;185;178;96;83;192;182;120;127];
y = [122;126;121;123;135;130;117;119;125;125;135;135;140;140;147;147;144;141;139];
[x, idx] = sort(x);
y = y(idx);
log_x = 10*log10(x);
X = [ones(size(x)) log_x];
param = X\y;
y_est = X*param;
y_err = y - y_est;
sigma = std(y_err);
plot(x, y, 'r+', x, y_est, 'b-')
  댓글 수: 2
Ahmad Hani
Ahmad Hani 2020년 6월 17일
Thanks Ameer Hamza,
Ameer Hamza
Ameer Hamza 2020년 6월 17일
I am glad to be of help!

댓글을 달려면 로그인하십시오.

추가 답변 (0개)

카테고리

Help CenterFile Exchange에서 Linear and Nonlinear Regression에 대해 자세히 알아보기

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by