Organising data for machine learning using buffer function

조회 수: 1 (최근 30일)
Impala
Impala 2020년 5월 30일
댓글: Star Strider 2020년 6월 3일
Hi,
I have some accelerometer data for various activities (standing, sitting, walking, walking upstairs, walking downstairs, laying), each activity coded by a number e.g. standing is 5 (see attached mat file - actid is the activity label and totalacc the accelerometer data). I’m looking to use the acc data to train a machine learning model to automatically identify the various postures/activities from accelerometer data.
To do so, I need to reorganise my accelerometer data into shorter buffers (50 samples long) of fixed length, for each posture/activity label. I have tried to use the buffer function but because the activities are all different sizes, I get zeros at the end (see "output_standing" variable in attached file as an example).
Is there a way to interpolate the data to replace my zeros with actual values? I tried the interp1 function but get NaN values - I think this is because it's the end of the signal, and ends in zeros.
Any help would be most appreciated!
Thanks!

채택된 답변

Star Strider
Star Strider 2020년 5월 30일
There may be more efficient ways to create specific features for classification. See: Introduction to Feature Selection for a number of examples.
In any event, MATLAB has a number of feature selection algorithms that can make this easier and more reliable. (I have very limited experience with these functions, since they did not exist when I was doing classification, and I only looked through them out of curiosity.)
  댓글 수: 4
Impala
Impala 2020년 6월 3일
This is great! Thanks very much :) very helpful!
Star Strider
Star Strider 2020년 6월 3일
As always, my pleasure!

댓글을 달려면 로그인하십시오.

추가 답변 (0개)

카테고리

Help CenterFile Exchange에서 Downloads에 대해 자세히 알아보기

제품


릴리스

R2019b

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by