Resolution of a second-order differential equation for different regions controlled by an external parameter

조회 수: 1 (최근 30일)
Hello everyone
I am trying to perform a time integration to a second-order differential equation numerically. The objective is to integrate the same equation into three different regimes. All this is explained in the document that I attach to my question. I write here the parameters involved:
mu0=4*pi*10^(-7);
gamma=2.21*10^5;
kB=1.38064852*10^(-23);
a0=3.328*10^(-10);
alpha_001=0.001;
muB=9.27400994*10^(-24);
mu=4*muB;
c=8.539*10^(-10);
V=c*(a0^2);
Ms=mu/V;
Delta0=1.9777269E-08;
vmax=43.3*10^(3);
Ss=5/2;
jinter=532*kB;
Jinter=jinter*Ss^2/V;
vmax=43.3*10^(3);
HSO=60*10^4/12.54;
C1=(2*alpha*gamma*Jinter)/(mu0*Ms);
C2=(2*(gamma^2)*Jinter*Delta0)/(mu0*Ms);
Hcrit=2.72*10^4/12.54;
t=[0:0.001:140].*(10^(-12));
ramping=[30 40 50 60].*(10^(-12));
Any idea?

채택된 답변

Ameer Hamza
Ameer Hamza 2020년 5월 7일
One of the few clearly stated questions on this website, so I will answer it :D. You first need to express your 2nd order ODE into a system of 2 first-order ODEs. See an example here: https://www.mathworks.com/help/matlab/ref/ode45.html#bu3uj8b. The following code uses a for-loop to use each value of ramping and solve the ODE. It outputs the results in a cell array. The two columns of the solution represent the values of x and . Try the following code
ramping=[30 40 50 60].*(10^(-12));
t=(0:0.1:140).*(10^(-12));
ic = [0; 0];
sol = cell(numel(ramping), 1); % each cell contains the solution for a particular value of ramping
for i=1:numel(ramping)
[~, sol{i}] = ode45(@(t,x) odeFun(t,x,ramping(i)), t, ic);
end
figure;
tiledlayout('flow');
for i=1:numel(sol)
nexttile
plot(t, sol{i});
legend({'$x$', '$\dot{x}$'}, ...
'Interpreter', 'latex', ...
'FontSize', 12)
title(sprintf('Ramping=%g', ramping(i)));
end
function dxdt = odeFun(t, x, ramping_time)
mu0=4*pi*10^(-7);
alpha=0.001;
gamma=2.21*10^5;
kB=1.38064852*10^(-23);
a0=3.328*10^(-10);
muB=9.27400994*10^(-24);
mu=4*muB;
c=8.539*10^(-10);
V=c*(a0^2);
Ms=mu/V;
Delta0=1.9777269E-08;
Ss=5/2;
jinter=532*kB;
Jinter=jinter*Ss^2/V;
vmax=43.3*10^(3);
HSO=60*10^4/12.54;
C1=(2*alpha*gamma*Jinter)/(mu0*Ms);
C2=(2*(gamma^2)*Jinter*Delta0)/(mu0*Ms);
Hcrit=2.72*10^4/12.54;
if t < ramping_time
y = max(HSO/ramping_time*t - Hcrit, 0);
elseif t < 100e-12
y = HSO;
else
y = 0;
end
dxdt(1) = x(2);
dxdt(2) = -C1*x(2) + C2*y*sqrt(1-(x(2)/vmax)^2);
dxdt = dxdt(:);
end
  댓글 수: 2
Roderick
Roderick 2020년 5월 7일
Hey! Thank you very much! I had an idea on how to deal with it, but I was a little bit lost at the time to implement it. I appreciate your words!

댓글을 달려면 로그인하십시오.

추가 답변 (0개)

카테고리

Help CenterFile Exchange에서 MATLAB에 대해 자세히 알아보기

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by