quadprog different output for R2020a and R2017a

조회 수: 7(최근 30일)
If I run quadprog minimization function I get completely different results on R2020a and R2017a. It seems that the output on the lattest release is wrong. Did something changed? Is it a bug you are aware of?
Kind regards
  댓글 수: 5
Kyril Kaufmann
Kyril Kaufmann 2020년 5월 5일
That's really nice of you.
For the moment I run the code with the 2017 release and it gives me nice results so it's not urgent. Thanks so much

댓글을 달려면 로그인하십시오.

채택된 답변

Jason Nicholson
Jason Nicholson 2020년 5월 6일
There is an option called 'LinearSolver'. It can be dense or sparse. I set it to sparse and it converged quickly.
This problem is solvable but be careful with the condition number of the H matrix. i.e. cond(H). The higher the condition number, the more ill-conditioned the problem. ill-condition problems are harder to solve. With the generic cost: J = 1/2*x'*H*x+f'*x. Small pertubations to f will cause large changes to the solution, x.
% Load files
structure = load('quadprog_input.mat');
H = structure.quadprog_input.H; % 404x404 matrix
f = structure.quadprog_input.f; % 1x404 vector
Aineq = structure.quadprog_input.Aineq; % 808x404 matrix
bineq = structure.quadprog_input.bineq; % 808x1 vector
% opt = structure.quadprog_input.opt;
% with opt.TolCon = 100*eps, opt.TollFun = 100*eps, opt.Display = 'none',
% opt.Algorithm = 'interior-point-convex
Aeq = [];
beq = [];
f = f'; % f should be 404x1
% Objective is 1/2*dp'*2*H*dp+f'*dp
% dp' is 1x404
% dp is 404x1
% 2*H is 404x404
% f is 404x1
% f' is 1x404
% 1/2*dp' * 2*H *dp + f' *dp
% 1x404 404x404 404x1 1x404 404x1
% 1x1 + 1x1
% 1x1
% Thus, f should be 404x1
opt = optimoptions('quadprog', 'TolCon', 100*eps, 'TolFun', 100*eps, ...
'Display', 'iter-detailed', 'Algorithm', 'interior-point-convex', ...
'MaxIter', 1500,'LinearSolver','sparse');
% Best case cost ignoring constraints
[~,fval,~] = quadprog(2*H,f,[], [], [], [],[],[],[],opt)
% solve quadprog problem. Note this doesn't converge
[dp,fval,~] = quadprog(2*H,f,Aineq, bineq, Aeq, beq,[],[],[],opt); fval
  댓글 수: 2
Kyril Kaufmann
Kyril Kaufmann 2020년 5월 6일
Hello, thanks for your support. No it's not a linear fitting.
With your set of options it works! At least my power imput (dp) is within meaningfull physical range. I'm not sure though what happend here...

댓글을 달려면 로그인하십시오.

추가 답변(0개)


Find more on Quadratic Programming and Cone Programming in Help Center and File Exchange


Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by