Output size of GAN Example

조회 수: 4 (최근 30일)
Alvaro Huerta
Alvaro Huerta 2020년 5월 4일
댓글: Abdullah alsuhail 2020년 8월 27일
Hello,
I am using the example of GAN to generate images, and I would like the output generated to be of a different size than 64x64x3, I've tried to change several parameters but I can't get it.
Any ideas?
Thanks in advance.
  댓글 수: 3
Sai Bhargav Avula
Sai Bhargav Avula 2020년 5월 11일
Can you give the link which example you referred to? Also attach the code that you tried.
Alvaro Huerta
Alvaro Huerta 2020년 5월 11일
Hello,
thanks for your reply.
I have tested the code, the output are images with 64x64 pixels. The example is in the link below.
Thanks for all.

댓글을 달려면 로그인하십시오.

답변 (1개)

Sai Bhargav Avula
Sai Bhargav Avula 2020년 5월 11일
편집: Sai Bhargav Avula 2020년 5월 11일
Hi,
The final size depends on the generator network architecture.
One way to achieve it is to change the filtersize of the generator may not be the ideal case for this example.
The ideal way is, based on your required output size you have to add transposedConv2dLayer to the architecture with proper filter size.
For example if you want the size to be 128*128 then simply add one more transposedConv2dLayer to the architecture
Remember you need to adjust the filtersize and channels accordingly
Hope this helps!
  댓글 수: 3
sara almheiri
sara almheiri 2020년 7월 15일
I keep getting a dlfeval error when I do the following adjustments. I would like to generate a 640x640 output size image but first I want to workout your solution. Would love to here back from you.
%Augment data
augmenter = imageDataAugmenter( ...
'RandXReflection',true, ...
'RandScale',[1 2]);
augimds = augmentedImageDatastore([128 128],imds,'DataAugmentation',augmenter);
%Define Generator Netwrok
filterSize = 5;
numFilters = 128;
numLatentInputs = 100;
projectionSize = [4 4 512];
layersGenerator = [
imageInputLayer([1 1 numLatentInputs],'Normalization','none','Name','in')
projectAndReshapeLayer(projectionSize,numLatentInputs,'proj');
transposedConv2dLayer(filterSize,8*numFilters,'Name','tconv1')
batchNormalizationLayer('Name','bnorm1')
reluLayer('Name','relu1')
transposedConv2dLayer(filterSize,4*numFilters,'Stride',2,'Cropping','same','Name','tconv2')
batchNormalizationLayer('Name','bnorm2')
reluLayer('Name','relu2')
transposedConv2dLayer(filterSize,2*numFilters,'Stride',2,'Cropping','same','Name','tconv3')
batchNormalizationLayer('Name','bnorm3')
reluLayer('Name','relu3')
transposedConv2dLayer(filterSize,3,'Stride',2,'Cropping','same','Name','tconv4')
tanhLayer('Name','tanh')];
lgraphGenerator = layerGraph(layersGenerator);
dlnetGenerator = dlnetwork(lgraphGenerator);
Abdullah alsuhail
Abdullah alsuhail 2020년 8월 27일
Hi Sara,
Did you find the solution? I stuck with the same problem.
I will appreciate if you can share the code here.
Thank you so much

댓글을 달려면 로그인하십시오.

카테고리

Help CenterFile Exchange에서 Image Data Workflows에 대해 자세히 알아보기

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by