How to plot graph of value of variable when a parameter is varied

조회 수: 23 (최근 30일)
Teck Lim
Teck Lim 2020년 4월 9일
댓글: Ameer Hamza 2020년 4월 9일
Hi all,
I have a system of equations and I would like to solve for e, τ, and k. However, I want to assume that the parameter R can take on several different values (e.g. 0.5, 1, 1.5). In particular, I hope to plot a graph of how the solution for any of my variables e, τ or k varies with R. I am really struggling with how this can be implemented in MATLAB. Any help will be much appreciated.

채택된 답변

Ameer Hamza
Ameer Hamza 2020년 4월 9일
편집: Ameer Hamza 2020년 4월 9일
Write your system of equation in the form
Where , and are the three equations in your queston. Then apply fsolve() function.
This is the code:
f_1 = @(e, tau, k, R) 1./(0.8*e.^0.7-e-tau-k) - 0.336*e.^-0.3./(tau+R.*k);
f_2 = @(e, tau, k, R) 1./(0.8*e.^0.7-e-tau-k) - 0.5./tau;
f_3 = @(e, tau, k, R) 1./(0.8*e.^0.7-e-tau-k) - (R-0.3)./(tau+R.*k);
f = @(e, tau, k, R) [f_1(e,tau,k,R); f_2(e,tau,k,R); f_3(e,tau,k,R)];
R = [0.5, 1, 1.5];
sol = zeros(numel(R), 3);
for i=1:numel(R)
sol(i,:) = fsolve(@(x) f(x(1),x(2),x(3), R(i)), rand(1,3));
end
plot(R, sol);
legend({'e', 'tau', 'k'});
  댓글 수: 5
Ameer Hamza
Ameer Hamza 2020년 4월 9일
편집: Ameer Hamza 2020년 4월 9일
Teck, your equation does seem to have multiple solutions, and the solution you mentioned for R=1 is correct. I tried different initial points, and values of R. The fsolve() is able to find a solution if R >= 0.8, but for smaller values, it cannot find a solution
f_1 = @(e, tau, k, R) 1./(0.8*e.^0.7-e-tau-k) - 0.336*e.^-0.3./(tau+R.*k);
f_2 = @(e, tau, k, R) 1./(0.8*e.^0.7-e-tau-k) - 0.5./tau;
f_3 = @(e, tau, k, R) 1./(0.8*e.^0.7-e-tau-k) - (R-0.3)./(tau+R.*k);
f = @(e, tau, k, R) [f_1(e,tau,k,R); f_2(e,tau,k,R); f_3(e,tau,k,R)];
R = [0.5, 0.8, 1, 1.5, 2];
sol = zeros(numel(R), 3);
for i=1:numel(R)
sol(i,:) = fsolve(@(x) f(x(1),x(2),x(3), R(i)), 1e-6.*rand(1,3));
f(sol(i,1), sol(i,2), sol(i,3), R(i)) % to check if the 3 equations are true.
end
plot(R, sol);
legend({'e', 'tau', 'k'});
Teck Lim
Teck Lim 2020년 4월 9일
Thanks again for your time.

댓글을 달려면 로그인하십시오.

추가 답변 (1개)

Torsten
Torsten 2020년 4월 9일
Your equations can only be solved for one value of R, namely R = 0.3 + 0.366*exp(-0.3).
This can be seen by dividing equation 1 by equation 3.
  댓글 수: 4
Teck Lim
Teck Lim 2020년 4월 9일
Thanks for the suggestion. I will try that out.
Ameer Hamza
Ameer Hamza 2020년 4월 9일
Torsten's analysis is correct. This system does have a closed-form solution. I used a symbolic toolbox to solve this system of equation, and it gives more accurate results (as expected) at R=0.5 as compared to the numeric solver. Following code shows the solution with symbolic approach
syms e tau k R
eq1 = 1./(0.8*e.^0.7-e-tau-k) - 0.336*e.^-0.3./(tau+R.*k);
eq2 = 1./(0.8*e.^0.7-e-tau-k) - 0.5./tau;
eq3 = 1./(0.8*e.^0.7-e-tau-k) - (R-0.3)./(tau+R.*k);
r = [0.5 1 1.5];
sols = zeros(numel(r), 3);
for i=1:numel(r)
sol = solve([eq1==0 eq2==0 eq3==0], [e tau k]);
sols(i,1) = subs(sol.e(1), R, r(i));
sols(i,2) = subs(sol.tau(1), R, r(i));
sols(i,3) = subs(sol.k(1), R, r(i));
end
sols = double(sols);
plot(r, sols);
legend({'e', 'tau', 'k'});

댓글을 달려면 로그인하십시오.

카테고리

Help CenterFile Exchange에서 Calculus에 대해 자세히 알아보기

제품

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by