From nested structure to table in one line of code
조회 수: 31 (최근 30일)
이전 댓글 표시
I have a structure S with n fields S_field_1, S_field_2,…S_field_n. Each field contains a structure with the same number m and name of fields field_1, field_2…field_m.
How do I get a nxm table with variables field_1, field_2…field_m with a single line of code?
Thank you!
댓글 수: 3
채택된 답변
dpb
2020년 3월 31일
편집: dpb
2020년 3월 31일
Will need some additional cleanup, but the basic tranformation is as
>> T=struct2table(struct2array(S));
>> T(1:10,:)
ans =
10×27 table
date filing_date currency_symbol researchDevelopment effectOfAccountingCharges incomeBeforeTax minorityInterest netIncome sellingGeneralAdministrative grossProfit ebit nonOperatingIncomeNetOther operatingIncome otherOperatingExpenses interestExpense extraordinaryItems nonRecurring otherItems incomeTaxExpense totalRevenue totalOperatingExpenses costOfRevenue totalOtherIncomeExpenseNet discontinuedOperations netIncomeFromContinuingOps netIncomeApplicableToCommonShares preferredStockAndOtherAdjustments
______________ ______________ _______________ ___________________ _________________________ ________________ ________________ ________________ ____________________________ _________________ ________________ __________________________ ________________ ______________________ ________________ __________________ ____________ ____________ ________________ _________________ ______________________ ________________ __________________________ ______________________ __________________________ _________________________________ _________________________________
{'2020-02-28'} {0×0 double } {'USD'} {'532000000.00'} {0×0 double} {'919000000.00'} {0×0 double} {'955000000.00'} {'1128000000.00'} {'2639000000.00'} {'937000000.00'} {0×0 double } {'937000000.00'} {0×0 double } {'-33000000.00'} {0×0 double} {0×0 double} {0×0 double} {'-36000000.00'} {'3091000000.00'} {'2154000000.00'} {'452000000.00'} {'-18000000.00'} {0×0 double} {'955000000.00'} {'955000000.00'} {0×0 double}
{'2019-11-29'} {0×0 double } {'USD'} {'499806000.00'} {0×0 double} {'957147000.00'} {0×0 double} {'851861000.00'} {'1027526000.00'} {'2539962000.00'} {'969932000.00'} {0×0 double } {'969932000.00'} {0×0 double } {'-36515000.00'} {0×0 double} {0×0 double} {0×0 double} {'105286000.00'} {'2991945000.00'} {'2022013000.00'} {'451983000.00'} {'-12785000.00'} {0×0 double} {'851861000.00'} {'851861000.00'} {0×0 double}
{'2019-08-30'} {0×0 double } {'USD'} {'489827000.00'} {0×0 double} {'834488000.00'} {0×0 double} {'792763000.00'} {'1031570000.00'} {'2418163000.00'} {'853812000.00'} {0×0 double } {'853812000.00'} {0×0 double } {'-39529000.00'} {0×0 double} {0×0 double} {0×0 double} {'41725000.00' } {'2834126000.00'} {'1980314000.00'} {'415963000.00'} {'-19324000.00'} {0×0 double} {'792763000.00'} {'792763000.00'} {0×0 double}
{'2019-05-31'} {'2019-06-26'} {'USD'} {'475958000.00'} {0×0 double} {'710772000.00'} {0×0 double} {'632593000.00'} {'1068261000.00'} {'2336792000.00'} {'749547000.00'} {'1802000.00' } {'749547000.00'} {'43026000.00'} {'-40577000.00'} {0×0 double} {0×0 double} {0×0 double} {'78179000.00' } {'2744280000.00'} {'1994733000.00'} {'407488000.00'} {'-38775000.00'} {0×0 double} {'632593000.00'} {'632593000.00'} {0×0 double}
{'2019-03-01'} {'2019-03-27'} {'USD'} {'464637000.00'} {0×0 double} {'702334000.00'} {0×0 double} {'674241000.00'} {'997627000.00' } {'2203660000.00'} {'694830000.00'} {'48097000.00'} {'694830000.00'} {'46566000.00'} {'-40593000.00'} {0×0 double} {0×0 double} {0×0 double} {'28093000.00' } {'2600946000.00'} {'1906116000.00'} {'397286000.00'} {'7504000.00' } {0×0 double} {'674241000.00'} {'674241000.00'} {0×0 double}
{'2018-11-30'} {'2019-01-25'} {'USD'} {'415958000.00'} {'0.00' } {'699217000.00'} {'0.00' } {'678240000.00'} {'935928000.00' } {'2105364000.00'} {'720546000.00'} {'6544000.00' } {'720546000.00'} {'32932000.00'} {'-27873000.00'} {'0.00' } {'0.00' } {'0.00' } {'20977000.00' } {'2464625000.00'} {'1744079000.00'} {'359261000.00'} {'-21329000.00'} {'0.00' } {'678240000.00'} {'678240000.00'} {0×0 double}
{'2018-08-31'} {'2018-09-26'} {'USD'} {'398957000.00'} {'0.00' } {'701358000.00'} {'0.00' } {'666291000.00'} {'854147000.00' } {'1995584000.00'} {'718606000.00'} {'3859000.00' } {'718606000.00'} {'23874000.00'} {'-21107000.00'} {'0.00' } {'0.00' } {'0.00' } {'35067000.00' } {'2291076000.00'} {'1276978000.00'} {'295492000.00'} {'-17248000.00'} {'0.00' } {'666291000.00'} {'666291000.00'} {0×0 double}
{'2018-06-01'} {'2018-06-27'} {'USD'} {'374128000.00'} {'0.00' } {'690799000.00'} {'0.00' } {'663167000.00'} {'824255000.00' } {'1914016000.00'} {'698484000.00'} {'12678000.00'} {'698484000.00'} {'17149000.00'} {'20363000.00' } {'0.00' } {'0.00' } {'0.00' } {'27632000.00' } {'2195360000.00'} {'1215532000.00'} {'281344000.00'} {'-7685000.00' } {'0.00' } {'663167000.00'} {'663167000.00'} {0×0 double}
{'2018-03-02'} {'2018-03-28'} {'USD'} {'348769000.00'} {'0.00' } {'702502000.00'} {'0.00' } {'583076000.00'} {'751397000.00' } {'1820045000.00'} {'702733000.00'} {'19668000.00'} {'702733000.00'} {'17146000.00'} {'19899000.00' } {'0.00' } {'0.00' } {'0.00' } {'119426000.00'} {'2078947000.00'} {'1117312000.00'} {'258902000.00'} {'-231000.00' } {'0.00' } {'583076000.00'} {'583076000.00'} {0×0 double}
{'2017-12-01'} {'2018-01-22'} {'USD'} {'324026000.00'} {'0.00' } {'643012000.00'} {'0.00' } {'501549000.00'} {'743671000.00' } {'1735723000.00'} {'662128000.00'} {'12788000.00'} {'649340000.00'} {'18686000.00'} {'19116000.00' } {'0.00' } {'0.00' } {'0.00' } {'141463000.00'} {'2006595000.00'} {'1086383000.00'} {'270872000.00'} {'-26159000.00'} {'0.00' } {'501549000.00'} {'501549000.00'} {0×0 double}
>>
To get to timetable must convert...did a few, rest as "exercise for Student"...
T.date=datetime(T.date); % convert to datetime so can convert to timetable
T.currency_symbol=categorical(T.currency_symbol); % better format for such a variable
T.researchDevelopment=str2double(T.researchDevelopment); % ditto for numeric
... % finish cleanup here...
which results in
>> format bank
>> TT=table2timetable(T);
>> TT(1:10,:)
ans =
10×26 timetable
date filing_date currency_symbol researchDevelopment effectOfAccountingCharges incomeBeforeTax minorityInterest netIncome sellingGeneralAdministrative grossProfit ebit nonOperatingIncomeNetOther operatingIncome otherOperatingExpenses interestExpense extraordinaryItems nonRecurring otherItems incomeTaxExpense totalRevenue totalOperatingExpenses costOfRevenue totalOtherIncomeExpenseNet discontinuedOperations netIncomeFromContinuingOps netIncomeApplicableToCommonShares preferredStockAndOtherAdjustments
___________ ______________ _______________ ___________________ _________________________ ________________ ________________ ________________ ____________________________ _________________ ________________ __________________________ ________________ ______________________ ________________ __________________ ____________ ____________ ________________ _________________ ______________________ ________________ __________________________ ______________________ __________________________ _________________________________ _________________________________
28-Feb-2020 {0×0 double } USD 532000000.00 {0×0 double} {'919000000.00'} {0×0 double} {'955000000.00'} {'1128000000.00'} {'2639000000.00'} {'937000000.00'} {0×0 double } {'937000000.00'} {0×0 double } {'-33000000.00'} {0×0 double} {0×0 double} {0×0 double} {'-36000000.00'} {'3091000000.00'} {'2154000000.00'} {'452000000.00'} {'-18000000.00'} {0×0 double} {'955000000.00'} {'955000000.00'} {0×0 double}
29-Nov-2019 {0×0 double } USD 499806000.00 {0×0 double} {'957147000.00'} {0×0 double} {'851861000.00'} {'1027526000.00'} {'2539962000.00'} {'969932000.00'} {0×0 double } {'969932000.00'} {0×0 double } {'-36515000.00'} {0×0 double} {0×0 double} {0×0 double} {'105286000.00'} {'2991945000.00'} {'2022013000.00'} {'451983000.00'} {'-12785000.00'} {0×0 double} {'851861000.00'} {'851861000.00'} {0×0 double}
30-Aug-2019 {0×0 double } USD 489827000.00 {0×0 double} {'834488000.00'} {0×0 double} {'792763000.00'} {'1031570000.00'} {'2418163000.00'} {'853812000.00'} {0×0 double } {'853812000.00'} {0×0 double } {'-39529000.00'} {0×0 double} {0×0 double} {0×0 double} {'41725000.00' } {'2834126000.00'} {'1980314000.00'} {'415963000.00'} {'-19324000.00'} {0×0 double} {'792763000.00'} {'792763000.00'} {0×0 double}
31-May-2019 {'2019-06-26'} USD 475958000.00 {0×0 double} {'710772000.00'} {0×0 double} {'632593000.00'} {'1068261000.00'} {'2336792000.00'} {'749547000.00'} {'1802000.00' } {'749547000.00'} {'43026000.00'} {'-40577000.00'} {0×0 double} {0×0 double} {0×0 double} {'78179000.00' } {'2744280000.00'} {'1994733000.00'} {'407488000.00'} {'-38775000.00'} {0×0 double} {'632593000.00'} {'632593000.00'} {0×0 double}
01-Mar-2019 {'2019-03-27'} USD 464637000.00 {0×0 double} {'702334000.00'} {0×0 double} {'674241000.00'} {'997627000.00' } {'2203660000.00'} {'694830000.00'} {'48097000.00'} {'694830000.00'} {'46566000.00'} {'-40593000.00'} {0×0 double} {0×0 double} {0×0 double} {'28093000.00' } {'2600946000.00'} {'1906116000.00'} {'397286000.00'} {'7504000.00' } {0×0 double} {'674241000.00'} {'674241000.00'} {0×0 double}
30-Nov-2018 {'2019-01-25'} USD 415958000.00 {'0.00' } {'699217000.00'} {'0.00' } {'678240000.00'} {'935928000.00' } {'2105364000.00'} {'720546000.00'} {'6544000.00' } {'720546000.00'} {'32932000.00'} {'-27873000.00'} {'0.00' } {'0.00' } {'0.00' } {'20977000.00' } {'2464625000.00'} {'1744079000.00'} {'359261000.00'} {'-21329000.00'} {'0.00' } {'678240000.00'} {'678240000.00'} {0×0 double}
31-Aug-2018 {'2018-09-26'} USD 398957000.00 {'0.00' } {'701358000.00'} {'0.00' } {'666291000.00'} {'854147000.00' } {'1995584000.00'} {'718606000.00'} {'3859000.00' } {'718606000.00'} {'23874000.00'} {'-21107000.00'} {'0.00' } {'0.00' } {'0.00' } {'35067000.00' } {'2291076000.00'} {'1276978000.00'} {'295492000.00'} {'-17248000.00'} {'0.00' } {'666291000.00'} {'666291000.00'} {0×0 double}
01-Jun-2018 {'2018-06-27'} USD 374128000.00 {'0.00' } {'690799000.00'} {'0.00' } {'663167000.00'} {'824255000.00' } {'1914016000.00'} {'698484000.00'} {'12678000.00'} {'698484000.00'} {'17149000.00'} {'20363000.00' } {'0.00' } {'0.00' } {'0.00' } {'27632000.00' } {'2195360000.00'} {'1215532000.00'} {'281344000.00'} {'-7685000.00' } {'0.00' } {'663167000.00'} {'663167000.00'} {0×0 double}
02-Mar-2018 {'2018-03-28'} USD 348769000.00 {'0.00' } {'702502000.00'} {'0.00' } {'583076000.00'} {'751397000.00' } {'1820045000.00'} {'702733000.00'} {'19668000.00'} {'702733000.00'} {'17146000.00'} {'19899000.00' } {'0.00' } {'0.00' } {'0.00' } {'119426000.00'} {'2078947000.00'} {'1117312000.00'} {'258902000.00'} {'-231000.00' } {'0.00' } {'583076000.00'} {'583076000.00'} {0×0 double}
01-Dec-2017 {'2018-01-22'} USD 324026000.00 {'0.00' } {'643012000.00'} {'0.00' } {'501549000.00'} {'743671000.00' } {'1735723000.00'} {'662128000.00'} {'12788000.00'} {'649340000.00'} {'18686000.00'} {'19116000.00' } {'0.00' } {'0.00' } {'0.00' } {'141463000.00'} {'2006595000.00'} {'1086383000.00'} {'270872000.00'} {'-26159000.00'} {'0.00' } {'501549000.00'} {'501549000.00'} {0×0 double}
>>
NB: will have to do logical indexing to fix up the non-string entries for filing_date as datetime can't convert the empty double entries.
There's no way can be done in just one line but isn't too bad once recognize should be a struct array instead of linear struct with metadata stored as field names.
Would also be simpler later if didn't have the null entry in the filing_date field when create the original data struct. An empty string instead would be converted to NaT would be the logical choice.
댓글 수: 2
dpb
2020년 3월 31일
That's bizarre...but it apparently was just some helper file
>> which struct2array
C:\ML_R2019b\toolbox\shared\measure\struct2array.m
Use
T=struct2cell(S);T=struct2table([T{:}]);
then. Requires another step--altho that's exactly what struct2array is w/o the input argument check.
추가 답변 (0개)
참고 항목
카테고리
Help Center 및 File Exchange에서 Structures에 대해 자세히 알아보기
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!