Sequence to Sequence Classification with Deep Learning CNN+LSTM

조회 수: 5 (최근 30일)
I was looking through the possible implementation of sequence classification using deep-learning.
There are pllenty of example of LSTM/BILSTM implementations
and 1D-Convolutional implementations of the problem.
My question is there is a way to combine the two solutions?
If for the first one the building of the net seems pretty immediate by stacking series of custom layers:
layers = [ ...
sequenceInputLayer(numFeatures)
lstmLayer(numHiddenUnits,'OutputMode','sequence')
fullyConnectedLayer(numClasses)
softmaxLayer
classificationLayer];
The convolution implementation seems indeed more complex, as it directly defines the various computational blocks.
Can i use a pre-defined convolution2Dlayer in the layers structure like in A) or do i have to go deeply in coding as described in B)?

채택된 답변

Srivardhan Gadila
Srivardhan Gadila 2020년 3월 25일
I think you can use the convolution2Dlayer with appropriate input arguments but make sure you use the sequenceFoldingLayer, sequenceUnfoldingLayer wherever necessary. Also refer to List of Deep Learning Layers.
  댓글 수: 2
Mirko Job
Mirko Job 2020년 3월 25일
Thanks for the early response,
It indeed came with good news since i am actually trying to solve the problem using custom loop and dlarrays with not satisfying results. However it is not clear for me the need for sequenceFolding/UnfoldingLayer since i am working on accelerometry data and not images. As a first rude approach, starting from the convolutional block described in:
I would concatenate the convolutional2DLayer just after the sequenceInputLayer. Is there any implicit step that i lost in the workflow?

댓글을 달려면 로그인하십시오.

추가 답변 (0개)

카테고리

Help CenterFile Exchange에서 Deep Learning Toolbox에 대해 자세히 알아보기

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by