How to make cosine Distance classify
조회 수: 5 (최근 30일)
이전 댓글 표시
Hello! I am a beginner in Matlab.
I have dataset that consisted of 90 data (10 label x 9 data).
Can I get an idea to make classify based on cosine distance or euclidean distance, etc?
댓글 수: 2
Ameer Hamza
2020년 3월 13일
Can you show an example of your dataset. For example, attach a small dataset and describe what is your expected output.
채택된 답변
Ameer Hamza
2020년 3월 14일
If you want to classify a new vector by using the Euclidean or cosine distance between the rows of your matrix and the new vector the try this
data = readmatrix('geo01_KTH.csv');
predictors = data(:, 1:end-1);
labels = data(:, end);
predictors = normalize(predictors, 2, 'range'); % normalize each row to be in range 0-1
x = rand(1, 2352); % generate a random vector
euclidean_dist = pdist2(predictors, x, 'euclidean');
cosine_dist = pdist2(predictors, x, 'cosine');
[~, euclidean_index] = min(euclidean_dist);
[~, cosine_index] = min(cosine_dist);
euclidean_prediction = labels(euclidean_index);
cosine_prediction = labels(cosine_index);
댓글 수: 11
추가 답변 (0개)
참고 항목
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!