Multi step ahead forecasting with LSTM

조회 수: 15 (최근 30일)
anurag kulshrestha
anurag kulshrestha 2020년 2월 7일
댓글: Raziye Ghasemi 2023년 11월 22일
How to perform multi-step ahead forecasting with LSTM. I want to predict 2,3, and 4 time stesp ahead prediction with LSTM?
Please help. Thanks in advance.
  댓글 수: 2
Nikolaos Efkarpidis
Nikolaos Efkarpidis 2021년 1월 13일
Dear,
How did you finally perform multi-step ahead forecasting with LSTM and predictAndUpdateState ?
I am also struggling with this issue.
Best regards,
Nick
Raziye Ghasemi
Raziye Ghasemi 2023년 11월 22일

How did you finally perform multi-step ahead forecasting with LSTM and predictAndUpdateState ? I am also struggling with this issue.

댓글을 달려면 로그인하십시오.

채택된 답변

adel adel
adel adel 2020년 5월 25일
Forecasting is basicaly sequence-to-sequence regression, let suppos that your entire sequence is data,
1. You divide data into train and test parts, you can specify the proportion as you wish:
numTimeStepsTrain = floor(0.9*numel(data));% 90% for training 10%for testing
dataTrain = data(1:numTimeStepsTrain+1);
dataTest = data(numTimeStepsTrain+1:end);
2. Preparing training data and response sequences by shifting data by one time step, such as for data(t) the response will be data(t+1)
XTrain = dataTrain(1:end-1);
YTrain = dataTrain(2:end);
3. Preparing the network and training hyperparameters, then train the network using training data and training responses
numFeatures = 1;
numResponses = 1;
numHiddenUnits = 200;
layers = [ ...
sequenceInputLayer(numFeatures)
lstmLayer(numHiddenUnits)
fullyConnectedLayer(numResponses)
regressionLayer];
options = trainingOptions('adam', ...
'MaxEpochs',250, ...
'GradientThreshold',1, ...
'InitialLearnRate',0.005, ...
'Verbose',0, ...
'Plots','training-progress');
net = trainNetwork(XTrain,YTrain,layers,options);
3. Now you can forecast 1, 2, 3 or 4 steps ahead using predictAndUpdateState function, since you use predicted values to update the network state and you don’t use actual values contained in dataTest for this, you can make predictions on any time step number
net = predictAndUpdateState(net,XTrain);
[net,YPred] = predictAndUpdateState(net,YTrain(end));
stepsAhead = 4; % you can use 1,2,3,4 on any value of steps ahead
for i = 2:stepsAhead+1
[net,YPred(:,i)] = predictAndUpdateState(net,YPred(:,i-1));
end
  댓글 수: 4
Gordon Elgin
Gordon Elgin 2023년 8월 25일
I have a question. I know that you can predict multi-time steps. However, how do we input say 5 timesteps to predict 1 time step ahead.
Kapila
Kapila 2023년 11월 2일
Any answer for this?

댓글을 달려면 로그인하십시오.

추가 답변 (1개)

David Willingham
David Willingham 2022년 3월 28일
Hi,
Please see this updated example in R2022a that shows multi-step ahead (closed loop) predictions:
  댓글 수: 2
Shawn Berry
Shawn Berry 2022년 3월 28일
Thanks!
nahed zemouri
nahed zemouri 2023년 6월 19일
thanks

댓글을 달려면 로그인하십시오.

카테고리

Help CenterFile Exchange에서 Sequence and Numeric Feature Data Workflows에 대해 자세히 알아보기

태그

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by