Dropout Layer Before Fully connected Layer

조회 수: 4 (최근 30일)
Abdussalam Elhanashi
Abdussalam Elhanashi 2020년 1월 17일
댓글: Abdussalam Elhanashi 2020년 1월 26일
Hi guys
I am asking if it is possible to make dropout layer before FC layer
Example below:-
layers = [
imageInputLayer([64 64 3],"Name","imageinput","Normalization","none")
convolution2dLayer([5 5],4,"Name","conv_1","Padding","same")
reluLayer("Name","relu_1")
maxPooling2dLayer([2 2],"Name","maxpool_1","Padding","same","Stride",[2 2])
convolution2dLayer([3 3],8,"Name","conv_2","Padding","same")
reluLayer("Name","relu_2")
maxPooling2dLayer([2 2],"Name","maxpool_2","Padding","same","Stride",[2 2])
convolution2dLayer([3 3],32,"Name","conv_3","Padding","same")
reluLayer("Name","relu_3")
averagePooling2dLayer([2 2],"Name","avgpool2d_1","Padding","same","Stride",[2 2])
convolution2dLayer([3 3],64,"Name","conv_4","Padding","same")
reluLayer("Name","relu_4")
averagePooling2dLayer([2 2],"Name","avgpool2d_2","Padding","same","Stride",[2 2])
dropoutLayer(0.51,'Name','drop1')
fullyConnectedLayer(2,"Name","fc")
softmaxLayer("Name","softmax")
classificationLayer("Name","classoutput")];
Best,

채택된 답변

Shashank Gupta
Shashank Gupta 2020년 1월 20일
Hi Abdussalam,
Yes, you can use Dropout layer before the fully connected layer, Dropout is just a regularization technique for preventing overfitting in the network, it can be applied anywhere regardless of FC or Conv but again it is generally recommended to use it after FC layer because they are the ones with the greater number of parameter and thus they are likely to excessively co-adapting themselves causing Overfitting.
However, it’s a stochastic regularization technique, you can really place it everywhere. Usually placed on the layer with a greater number of parameters, but no denies you from applying anywhere.
  댓글 수: 1
Abdussalam Elhanashi
Abdussalam Elhanashi 2020년 1월 26일
Hi Shashank Gupta
Thank For your reply
Is it possibe to use Dropout with value 0.6?
Best,

댓글을 달려면 로그인하십시오.

추가 답변 (0개)

카테고리

Help CenterFile Exchange에서 Web Services에 대해 자세히 알아보기

태그

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by