필터 지우기
필터 지우기

How to plot a "goal" into my plot?

조회 수: 1 (최근 30일)
Noah Wilson
Noah Wilson 2019년 12월 13일
댓글: Noah Wilson 2019년 12월 14일
This is only to do something cool in the plot but I am plotting the trajectory of a soccer ball and I thought it would be cool to plot a "goal" (a rectangle) into the figure since I have a green surface that looks like a field already.
My code is the following:
%% Constants
t = linspace(0, 10, 1000);
m = 0.4; %mass (kg)
g = 9.8; %gravitational accel. (m/s.^2)
b = 0.44; %drag coefficient
w_1 = 1.5; %Angular Velocity
w_2 = 1; %Angular Velocity
w_3 = 0.5; %Angular Velocity
%% w_1
x_t_1 = (2349.*m)./(100.*b) - (2349.*m.*exp(-(b.*t)./m))./(100.*b);
y_t_1 = (g.*m.*t.*w_1)./(b.^2 + w_1.^2) - (171.*b.^2.*m.*w_1)./(20.*(b.^4 + 2.*b.^2.*w_1.^2 + w_1.^4)) - (171.*m.*w_1.^3)./(20.*(b.^4 + 2.*b.^2.*w_1.^2 + w_1.^4)) - (2.*b.*g.*m.^2.*w_1)./(b.^4 + 2.*b.^2.*w_1.^2 + w_1.^4) + (171.*b.^3.*m.*exp(-(b.*t)./m).*sin((t.*w_1)./m))./(20.*(b.^4 + 2.*b.^2.*w_1.^2 + w_1.^4)) + (171.*m.*w_1.^3.*exp(-(b.*t)./m).*cos((t.*w_1)./m))./(20.*(b.^4 + 2.*b.^2.*w_1.^2 + w_1.^4)) + (171.*b.^2.*m.*w_1.*exp(-(b.*t)./m).*cos((t.*w_1)./m))./(20.*(b.^4 + 2.*b.^2.*w_1.^2 + w_1.^4)) + (171.*b.*m.*w_1.^2.*exp(-(b.*t)./m).*sin((t.*w_1)./m))./(20.*(b.^4 + 2.*b.^2.*w_1.^2 + w_1.^4)) + (b.^2.*g.*m.^2.*exp(-(b.*t)./m).*sin((t.*w_1)./m))./(b.^4 + 2.*b.^2.*w_1.^2 + w_1.^4) - (g.*m.^2.*w_1.^2.*exp(-(b.*t)./m).*sin((t.*w_1)./m))./(b.^4 + 2.*b.^2.*w_1.^2 + w_1.^4) + (2.*b.*g.*m.^2.*w_1.*exp(-(b.*t)./m).*cos((t.*w_1)./m))./(b.^4 + 2.*b.^2.*w_1.^2 + w_1.^4);
z_t_1 = (171.*b.^3.*m)./(20.*(b.^4 + 2.*b.^2.*w_1.^2 + w_1.^4)) + (171.*b.*m.*w_1.^2)./(20.*(b.^4 + 2.*b.^2.*w_1.^2 + w_1.^4)) + (b.^2.*g.*m.^2)./(b.^4 + 2.*b.^2.*w_1.^2 + w_1.^4) - (g.*m.^2.*w_1.^2)./(b.^4 + 2.*b.^2.*w_1.^2 + w_1.^4) - (b.*g.*m.*t)./(b.^2 + w_1.^2) - (171.*b.^3.*m.*exp(-(b.*t)./m).*cos((t.*w_1)./m))./(20.*(b.^4 + 2.*b.^2.*w_1.^2 + w_1.^4)) + (171.*m.*w_1.^3.*exp(-(b.*t)./m).*sin((t.*w_1)./m))./(20.*(b.^4 + 2.*b.^2.*w_1.^2 + w_1.^4)) - (171.*b.*m.*w_1.^2.*exp(-(b.*t)./m).*cos((t.*w_1)./m))./(20.*(b.^4 + 2.*b.^2.*w_1.^2 + w_1.^4)) + (171.*b.^2.*m.*w_1.*exp(-(b.*t)./m).*sin((t.*w_1)./m))./(20.*(b.^4 + 2.*b.^2.*w_1.^2 + w_1.^4)) - (b.^2.*g.*m.^2.*exp(-(b.*t)./m).*cos((t.*w_1)./m))./(b.^4 + 2.*b.^2.*w_1.^2 + w_1.^4) + (g.*m.^2.*w_1.^2.*exp(-(b.*t)./m).*cos((t.*w_1)./m))./(b.^4 + 2.*b.^2.*w_1.^2 + w_1.^4) + (2.*b.*g.*m.^2.*w_1.*exp(-(b.*t)./m).*sin((t.*w_1)./m))./(b.^4 + 2.*b.^2.*w_1.^2 + w_1.^4);
%% w_2
x_t_2 = (2349.*m)./(100.*b) - (2349.*m.*exp(-(b.*t)./m))./(100.*b);
y_t_2 = (g.*m.*t.*w_2)./(b.^2 + w_2.^2) - (171.*b.^2.*m.*w_2)./(20.*(b.^4 + 2.*b.^2.*w_2.^2 + w_2.^4)) - (171.*m.*w_2.^3)./(20.*(b.^4 + 2.*b.^2.*w_2.^2 + w_2.^4)) - (2.*b.*g.*m.^2.*w_2)./(b.^4 + 2.*b.^2.*w_2.^2 + w_2.^4) + (171.*b.^3.*m.*exp(-(b.*t)./m).*sin((t.*w_2)./m))./(20.*(b.^4 + 2.*b.^2.*w_2.^2 + w_2.^4)) + (171.*m.*w_2.^3.*exp(-(b.*t)./m).*cos((t.*w_2)./m))./(20.*(b.^4 + 2.*b.^2.*w_2.^2 + w_2.^4)) + (171.*b.^2.*m.*w_2.*exp(-(b.*t)./m).*cos((t.*w_2)./m))./(20.*(b.^4 + 2.*b.^2.*w_2.^2 + w_2.^4)) + (171.*b.*m.*w_2.^2.*exp(-(b.*t)./m).*sin((t.*w_2)./m))./(20.*(b.^4 + 2.*b.^2.*w_2.^2 + w_2.^4)) + (b.^2.*g.*m.^2.*exp(-(b.*t)./m).*sin((t.*w_2)./m))./(b.^4 + 2.*b.^2.*w_2.^2 + w_2.^4) - (g.*m.^2.*w_2.^2.*exp(-(b.*t)./m).*sin((t.*w_2)./m))./(b.^4 + 2.*b.^2.*w_2.^2 + w_2.^4) + (2.*b.*g.*m.^2.*w_2.*exp(-(b.*t)./m).*cos((t.*w_2)./m))./(b.^4 + 2.*b.^2.*w_2.^2 + w_2.^4);
z_t_2 = (171.*b.^3.*m)./(20.*(b.^4 + 2.*b.^2.*w_2.^2 + w_2.^4)) + (171.*b.*m.*w_2.^2)./(20.*(b.^4 + 2.*b.^2.*w_2.^2 + w_2.^4)) + (b.^2.*g.*m.^2)./(b.^4 + 2.*b.^2.*w_2.^2 + w_2.^4) - (g.*m.^2.*w_2.^2)./(b.^4 + 2.*b.^2.*w_2.^2 + w_2.^4) - (b.*g.*m.*t)./(b.^2 + w_2.^2) - (171.*b.^3.*m.*exp(-(b.*t)./m).*cos((t.*w_2)./m))./(20.*(b.^4 + 2.*b.^2.*w_2.^2 + w_2.^4)) + (171.*m.*w_2.^3.*exp(-(b.*t)./m).*sin((t.*w_2)./m))./(20.*(b.^4 + 2.*b.^2.*w_2.^2 + w_2.^4)) - (171.*b.*m.*w_2.^2.*exp(-(b.*t)./m).*cos((t.*w_2)./m))./(20.*(b.^4 + 2.*b.^2.*w_2.^2 + w_2.^4)) + (171.*b.^2.*m.*w_2.*exp(-(b.*t)./m).*sin((t.*w_2)./m))./(20.*(b.^4 + 2.*b.^2.*w_2.^2 + w_2.^4)) - (b.^2.*g.*m.^2.*exp(-(b.*t)./m).*cos((t.*w_2)./m))./(b.^4 + 2.*b.^2.*w_2.^2 + w_2.^4) + (g.*m.^2.*w_2.^2.*exp(-(b.*t)./m).*cos((t.*w_2)./m))./(b.^4 + 2.*b.^2.*w_2.^2 + w_2.^4) + (2.*b.*g.*m.^2.*w_2.*exp(-(b.*t)./m).*sin((t.*w_2)./m))./(b.^4 + 2.*b.^2.*w_2.^2 + w_2.^4);
%% w_3
x_t_3 = (2349.*m)./(100.*b) - (2349.*m.*exp(-(b.*t)./m))./(100.*b);
y_t_3 = (g.*m.*t.*w_3)./(b.^2 + w_3.^2) - (171.*b.^2.*m.*w_3)./(20.*(b.^4 + 2.*b.^2.*w_3.^2 + w_3.^4)) - (171.*m.*w_3.^3)./(20.*(b.^4 + 2.*b.^2.*w_3.^2 + w_3.^4)) - (2.*b.*g.*m.^2.*w_3)./(b.^4 + 2.*b.^2.*w_3.^2 + w_3.^4) + (171.*b.^3.*m.*exp(-(b.*t)./m).*sin((t.*w_3)./m))./(20.*(b.^4 + 2.*b.^2.*w_3.^2 + w_3.^4)) + (171.*m.*w_3.^3.*exp(-(b.*t)./m).*cos((t.*w_3)./m))./(20.*(b.^4 + 2.*b.^2.*w_3.^2 + w_3.^4)) + (171.*b.^2.*m.*w_3.*exp(-(b.*t)./m).*cos((t.*w_3)./m))./(20.*(b.^4 + 2.*b.^2.*w_3.^2 + w_3.^4)) + (171.*b.*m.*w_3.^2.*exp(-(b.*t)./m).*sin((t.*w_3)./m))./(20.*(b.^4 + 2.*b.^2.*w_3.^2 + w_3.^4)) + (b.^2.*g.*m.^2.*exp(-(b.*t)./m).*sin((t.*w_3)./m))./(b.^4 + 2.*b.^2.*w_3.^2 + w_3.^4) - (g.*m.^2.*w_3.^2.*exp(-(b.*t)./m).*sin((t.*w_3)./m))./(b.^4 + 2.*b.^2.*w_3.^2 + w_3.^4) + (2.*b.*g.*m.^2.*w_3.*exp(-(b.*t)./m).*cos((t.*w_3)./m))./(b.^4 + 2.*b.^2.*w_3.^2 + w_3.^4);
z_t_3 = (171.*b.^3.*m)./(20.*(b.^4 + 2.*b.^2.*w_3.^2 + w_3.^4)) + (171.*b.*m.*w_3.^2)./(20.*(b.^4 + 2.*b.^2.*w_3.^2 + w_3.^4)) + (b.^2.*g.*m.^2)./(b.^4 + 2.*b.^2.*w_3.^2 + w_3.^4) - (g.*m.^2.*w_3.^2)./(b.^4 + 2.*b.^2.*w_3.^2 + w_3.^4) - (b.*g.*m.*t)./(b.^2 + w_3.^2) - (171.*b.^3.*m.*exp(-(b.*t)./m).*cos((t.*w_3)./m))./(20.*(b.^4 + 2.*b.^2.*w_3.^2 + w_3.^4)) + (171.*m.*w_3.^3.*exp(-(b.*t)./m).*sin((t.*w_3)./m))./(20.*(b.^4 + 2.*b.^2.*w_3.^2 + w_3.^4)) - (171.*b.*m.*w_3.^2.*exp(-(b.*t)./m).*cos((t.*w_3)./m))./(20.*(b.^4 + 2.*b.^2.*w_3.^2 + w_3.^4)) + (171.*b.^2.*m.*w_3.*exp(-(b.*t)./m).*sin((t.*w_3)./m))./(20.*(b.^4 + 2.*b.^2.*w_3.^2 + w_3.^4)) - (b.^2.*g.*m.^2.*exp(-(b.*t)./m).*cos((t.*w_3)./m))./(b.^4 + 2.*b.^2.*w_3.^2 + w_3.^4) + (g.*m.^2.*w_3.^2.*exp(-(b.*t)./m).*cos((t.*w_3)./m))./(b.^4 + 2.*b.^2.*w_3.^2 + w_3.^4) + (2.*b.*g.*m.^2.*w_3.*exp(-(b.*t)./m).*sin((t.*w_3)./m))./(b.^4 + 2.*b.^2.*w_3.^2 + w_3.^4);
%% Drag Only
xt = (23.49.*m./b) - (23.49.*m.*exp(-b.*t./m)./b);
yt = 0.*t;
zt = (m.*(171.*b + 20.*g.*m)./(20.*b.^2)) - (m.*(g.*t + (exp(-b.*t./m).*(171.*b + 20.*g.*m)./(20.*b)))./b);
%% Plot
figure(1)
plot3(x_t_1, y_t_1, z_t_1)
hold on
plot3(x_t_2, y_t_2, z_t_2)
plot3(x_t_3, y_t_3, z_t_3)
plot3(xt, yt, zt)
xlabel('X (m)')
ylabel('Y (m)')
zlabel('Z (m)')
% xlim([0 15])
ylim([-5 5])
zlim([0 inf])
hs = surf(xlim, ylim, zeros(2));
hs.FaceColor = [0.3 0.5 0.1];
grid on
legend('\omega = 1.5 rad/s', '\omega = 1.0 rad/s', '\omega = 0.5 rad/s', 'Drag Only')
hold off
I'm not sure if a piecewise plot might be the way to go to get a rectangle at z=0, y=[-2 2], x=20 ?
Thanks for the help in advanced!

채택된 답변

Fangjun Jiang
Fangjun Jiang 2019년 12월 13일
help rectangle
  댓글 수: 1
Noah Wilson
Noah Wilson 2019년 12월 14일
From what I read that is for a 2D plot. I'm hoping to put it in my 3D plot. Thanks!

댓글을 달려면 로그인하십시오.

추가 답변 (0개)

카테고리

Help CenterFile Exchange에서 Graphics Performance에 대해 자세히 알아보기

제품


릴리스

R2018b

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by