How to iterate over parfor

조회 수: 1 (최근 30일)
Luca Pecoriello
Luca Pecoriello 2019년 12월 10일
댓글: Luca Pecoriello 2019년 12월 11일
Hi everyone.
I need to apply some heavy signal processing to a third-order tensor (typcal set of data coming from thermography). The data has the structure of pixel-pixel-time.
I wanto to use the parfor, but I am struggling in implementing a for loop.
I am aware that this syntax does not work:
%% mock data
input signal = zeros(1,3000);
output_raw_signal = zeros(512,640,3000);
AA_filtered = []; %% no need to prealloc I know
parfor i=1:512
for j=1:640
AA_filtered(i,j,:) = xcorr(squeeze(output_raw_signal(i,j,:)),.input_signal) %% cross correlation for each pixel in time
end
end
If I run this, I get the error "The variable in a parfor cannot be classified"
But what is a possible solution?
Greetings.
Luca
  댓글 수: 1
Luca Pecoriello
Luca Pecoriello 2019년 12월 10일
Hi. You are absolutely right about the third dimension of the output tensor. I have corrected it now.
why do you think the syntax does not work? what error are you getting?
I am getting "variable in a The variable in a parfor cannot be classified". Which should be expected since in a parfor with a nested for loop, the variables running one loop should not communicate with the other ones. They should be independent.

댓글을 달려면 로그인하십시오.

채택된 답변

Ridwan Alam
Ridwan Alam 2019년 12월 10일
편집: Ridwan Alam 2019년 12월 11일
I am not sure how much this would help, as I couldn't reproduce your error. Please let me know how it goes.
input_signal = zeros(1,3000);
output_raw_signal = zeros(512,640,3000);
AA_filtered = cell(512,1);
parfor i=1:512
tempvar = [];
for j=1:640
newvar = xcorr(squeeze(output_raw_signal(i,j,:)),input_signal);
newvar = reshape(newvar,1,[]);
tempvar = [tempvar;newvar];
end
AA_filtered{i} = tempvar;
end
even this ran fine:
input_signal = zeros(1,3000);
output_raw_signal = zeros(512,640,3000);
AA_filtered = [];
parfor i=1:512
tempvar = [];
for j=1:640
newvar = xcorr(squeeze(output_raw_signal(i,j,:)),input_signal);
newvar = reshape(newvar,1,[]);
tempvar = [tempvar;newvar];
end
AA_filtered(i,:,:) = tempvar;
end
  댓글 수: 7
Walter Roberson
Walter Roberson 2019년 12월 11일
However: when there is an object transferred whose class is not known to the workers, it appears as a struct.
Luca Pecoriello
Luca Pecoriello 2019년 12월 11일

댓글을 달려면 로그인하십시오.

추가 답변 (1개)

Walter Roberson
Walter Roberson 2019년 12월 11일
편집: Walter Roberson 2019년 12월 11일
%% mock data
input_signal = zeros(1,3000);
output_raw_signal = zeros(512,640,3000);
AA_filtered = []; %% no need to prealloc I know
parfor i=1:512
output_raw_signal_i = output_raw_signal(i,:,:);
for j=1:640
AA_filtered_i(j,:) = xcorr(output_raw_signal_i(j,:).', input_signal) %% cross correlation for each pixel in time
end
AA_filtered(i, :, :) = AA_filtered_i;
end
  댓글 수: 2
Luca Pecoriello
Luca Pecoriello 2019년 12월 11일
Hi
This option gives me the following error in the workspace.
Error: The variable AA_filtered in a parfor cannot be classified. See Parallel for Loops in MATLAB, "Overview".
Walter Roberson
Walter Roberson 2019년 12월 11일
Try removing the initial assignment to AA_filtered

댓글을 달려면 로그인하십시오.

카테고리

Help CenterFile Exchange에서 Direction of Arrival Estimation에 대해 자세히 알아보기

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by