MATLAB Answers

R-CNNでのクラス名におけるエラーについて

조회 수: 1(최근 30일)
Yuki Yoshino
Yuki Yoshino 2019년 11월 21일
답변: Kazuya 2019년 11월 28일
R-CNNを用いて物体検出を行いたいと考えています。
以下のCNNの層構造において
層.jpg
15層目のプロパティ、およびclassは以下のようになっています。
15層目.jpg
15層目カテゴリ.jpg
学習データのクラス名は以下のようになっています。
学習データ.jpg
rcnn = trainRCNNObjectDetector(data, layers, options, 'NegativeOverlapRange', [0 0.3]);を処理している際、
"ニューラル ネットワークに学習データ内のオブジェクトを分類させるための学習を実行中"において
下記のようなエラーが出てしまいました。
エラー: trainNetwork (line 150)
層 15 のクラス名は、学習データのクラス名と一致しなければなりません。学習データのクラス名は categories(Y) で指定されます。ここで、Y は学習データのラベルです。
エラー: rcnnObjectDetector.train (line 239)
[net, info] = trainNetwork(dispatcher, layers, opts);
エラー: trainRCNNObjectDetector (line 280)
[detector, ~, info] = rcnnObjectDetector.train(trainingData, lgraphOrLayers, options, params);
エラー: Untitled_36 (line 16)
rcnn = trainRCNNObjectDetector(data, layers, options, 'NegativeOverlapRange', [0 0.3]);
上記のようなエラーが出てしまい、実行できません。どのように改善を行えばよいのでしょうか。
よろしくお願いいたします。
  댓글 수: 9
Kazuya
Kazuya 2019년 11월 28일
良かったです!

댓글을 달려면 로그인하십시오.

채택된 답변

Kazuya
Kazuya 2019년 11월 28일
こちらに回答として転記しておきます。
****
学習済みのネットワークは positive/nagative の2クラス分類を行うものですが、学習データに positive が無いのが原因の様です。
tmp = net.Layers;
layers = [tmp(1:end-1)
classificationLayer];
と classificationLayer だけ新しいものするとエラーは解決します。

추가 답변(1개)

Hiro
Hiro 2019년 11월 25일
まずは、こちらをご参考にしてみては如何でしょうか?
あとは、作成したネットワークの整合性チェックをディープネットワークデザイナーから行えます。
キャプチャ.PNG

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!