how can I effectively compute expected value by histogram approximation of probability desnsity function

조회 수: 16 (최근 30일)
What is the proper way to compute effectively (fast) the expected value E(x) in a case when I have approximation of probability desity function f(x) by probability normalized histogram?
Is there (FEX) any code available?
  댓글 수: 2
the cyclist
the cyclist 2019년 10월 22일
In what form do you have the approximate pdf? Is it a MATLAB function? Or is it a series of discrete values at specific x locations? Or something else? Can you upload your input data?
Michal
Michal 2019년 10월 22일
편집: Michal 2019년 10월 22일
It is structure of discrete values similar to matlab histogram object.

댓글을 달려면 로그인하십시오.

답변 (1개)

the cyclist
the cyclist 2019년 10월 22일
There might be some nuances in the numerical integration, but here is the basic idea. You need to approximate the integral of x over the pdf.
% For reproducibility
rng default
% Simulated data -- normal centered on x=5.
N = 1000000;
x = 5 + randn(N,1);
% Get the probability density function. (You have these values already?)
[pdf_x,xi] = ksdensity(x);
% The bin width. (In this case, they are all equal, so I just take the first one.)
dx = xi(2) - xi(1);
% Calculate the total probability. (It should be 1.)
total_probability = sum(pdf_x*dx)
% Calculate the mean, which is the expected value of x.
mean_x = sum(xi.*pdf_x*dx)
  댓글 수: 4
Michal
Michal 2019년 10월 22일
OK ... thanks for basic info. I think the "nuances" of integration will be my main problem.
I will try to use matlab "discretize" function to find pdf approximation at my histogram points and then integration over x * pdf * width.

댓글을 달려면 로그인하십시오.

카테고리

Help CenterFile Exchange에서 Exploration and Visualization에 대해 자세히 알아보기

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by