이 질문을 팔로우합니다.
- 팔로우하는 게시물 피드에서 업데이트를 확인할 수 있습니다.
- 정보 수신 기본 설정에 따라 이메일을 받을 수 있습니다.
MATLAB Result Figure for genetic algorithm
조회 수: 4 (최근 30일)
이전 댓글 표시
Maryam
2019년 10월 17일
Hi all,
I have a question about the plot that MATLAB creates runnig genetic algorithm. The vertical axis shows the "number of individuals" and the horizontal axis shows "score". In Mathwork website, I found the definition for these as below:
- number of individuals: number of population in each generation
- score: fitness function or objective function value
My questions are:
- Is the the diagram shows the values correspond to all of the iterations from start to end, or it just shows the values for the last iteration?
- Based on my understanding the "population size" should remain the same for all the generations, if this is correct why it keeps changing in this diagram?
Thank you so much for your time and consideration.
댓글 수: 16
Walter Roberson
2019년 10월 17일
Which of the plot options are you using? https://www.mathworks.com/help/gads/genetic-algorithm-options.html#f14474
Maryam
2019년 10월 17일
I believe I used 'gaplotscores'. Below is the example of my resaults. Please note that the lower diagram, not the upper one, is the one I'm refering to!

Walter Roberson
2019년 10월 17일
The lower one is a histogram with scores on the x and number of entries in the population with that score vertically. It refers to the current generation.
Maryam
2019년 10월 17일
Thanks for the explanation. So the score is the objective function value? Also when you say number of entries in population you mean the number of population? If not what exactly you mean by that?
Walter Roberson
2019년 10월 17일
The number of individuals in the population whose score falls within a range is on the y axes.
At the moment I do not know if score is objective function value or that value modified to penalize constraint violations.
Maryam
2019년 10월 17일
Oh that clears up a lot. Basically it does not show all the population, but it only shows the certain number of population which have that certain score!
I don’t have any constraints! Also it is a non-integer problem, so I believe the score shows the objective function value. If this is the case, it means that at the last iteration the number of population with the objective function value are zero?! Or non of the population members falls within the objective function value?! (Isn’t this mean we have not reached the right answer?)
Walter Roberson
2019년 10월 17일
ga() stops processing under a number of different circumstances. It would not be typical that the entire population has converged to the same solution. It would be more typical that the best score had not decreased for a number of iterations.
Maryam
2019년 10월 17일
Thanks so much for taking your time answering my question. I do appreciate it. I just wanna make sure I understood completely. Based on my understanding, the low diagram shows the last iteration (not all the iterations), and it shows the score of different individual in the population. For example, 35 of the population falls within the first range score. And the second bar shows almost 4 of the population have the score of second range. Correct?
I again thank you so very much for your explanation and highly appreciate your answers!
Walter Roberson
2019년 10월 17일
Yes, I agree, about 35 of the population is in the first score range, and 3 or 4 are in the second score range.
Maryam
2019년 10월 19일
Sorry one more question: does this diagram shows all of the individuals in the population? If not why? And if not how many are the individuals are shown in the figure, any rules for that?
Thanks again so much!
Walter Roberson
2019년 10월 19일
I am not sure at the moment. If the first bin is 37 then it looks like the total is 50.
Maryam
2019년 10월 19일
Thank you. So you believe the figure shows all the individuals in population correct (which in this example is about 50)?
Walter Roberson
2019년 10월 19일
I think that one does but I cannot be sure at the moment that one outlier did not get dropped. I would need to dig into the code.
Maryam
2019년 10월 19일
Okay. Is there any reason for MATLAB to drop an outlier? I mean is there a rule or something or it just random?
I do appreciate you answering my questions patiently!
답변 (0개)
참고 항목
카테고리
Help Center 및 File Exchange에서 Genetic Algorithm에 대해 자세히 알아보기
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!오류 발생
페이지가 변경되었기 때문에 동작을 완료할 수 없습니다. 업데이트된 상태를 보려면 페이지를 다시 불러오십시오.
웹사이트 선택
번역된 콘텐츠를 보고 지역별 이벤트와 혜택을 살펴보려면 웹사이트를 선택하십시오. 현재 계신 지역에 따라 다음 웹사이트를 권장합니다:
또한 다음 목록에서 웹사이트를 선택하실 수도 있습니다.
사이트 성능 최적화 방법
최고의 사이트 성능을 위해 중국 사이트(중국어 또는 영어)를 선택하십시오. 현재 계신 지역에서는 다른 국가의 MathWorks 사이트 방문이 최적화되지 않았습니다.
미주
- América Latina (Español)
- Canada (English)
- United States (English)
유럽
- Belgium (English)
- Denmark (English)
- Deutschland (Deutsch)
- España (Español)
- Finland (English)
- France (Français)
- Ireland (English)
- Italia (Italiano)
- Luxembourg (English)
- Netherlands (English)
- Norway (English)
- Österreich (Deutsch)
- Portugal (English)
- Sweden (English)
- Switzerland
- United Kingdom(English)
아시아 태평양
- Australia (English)
- India (English)
- New Zealand (English)
- 中国
- 日本Japanese (日本語)
- 한국Korean (한국어)
