Error in matlab included deep learning example

조회 수: 5 (최근 30일)
Javier Bush
Javier Bush 2019년 10월 15일
편집: Walter Roberson 2019년 12월 30일
I am trying to run the matlab example
openExample('nnet/SeqToSeqClassificationUsing1DConvAndModelFunctionExample')
In 2019b but, when i change to train the network on gpu the example show me this error. Please help me to run it or give me a workaround to train using gpu.
Error using gpuArray/subsasgn
Attempt to grow array along ambiguous dimension.
Error in deep.internal.recording.operations.ParenAssignOp/forward (line 45)
x(op.Index{:}) = rhs;
Error in deep.internal.recording.RecordingArray/parenAssign (line 29)
x = recordBinary(x,rhs,op);
Error in dlarray/parenAssign (line 39)
objdata(varargin{:}) = rhsdata;
Error in SeqToSeqClassificationUsing1DConvAndModelFunctionExample>maskedCrossEntropyLoss (line 484)
loss(i) = crossentropy(dlY(:,i,idx),dlT(:,i,idx),'DataFormat','CBT');
Error in SeqToSeqClassificationUsing1DConvAndModelFunctionExample>modelGradients (line 469)
loss = maskedCrossEntropyLoss(dlY, dlT, numTimeSteps);
Error in deep.internal.dlfeval (line 18)
[varargout{1:nout}] = fun(x{:});
Error in dlfeval (line 40)
[varargout{1:nout}] = deep.internal.dlfeval(fun,varargin{:});
Error in SeqToSeqClassificationUsing1DConvAndModelFunctionExample (line 284)
[gradients, loss] = dlfeval(@modelGradients,dlX,Y,parameters,hyperparameters,numTimeSteps);
Thanks!
  댓글 수: 1
Edric Ellis
Edric Ellis 2019년 10월 15일
Thanks for reporting this - I can reproduce the problem using R2019b here, I shall forward this to the development team...

댓글을 달려면 로그인하십시오.

채택된 답변

Joss Knight
Joss Knight 2019년 10월 15일
There is a bug in this Example which will be rectified. Thanks for reporting. To workaround, initialize the loss variable in the maskedCrossEntropyLoss function:
function loss = maskedCrossEntropyLoss(dlY, dlT, numTimeSteps)
numObservations = size(dlY,2);
loss = zeros([1,1],'like',dlY); % Add this line
for i = 1:numObservations
idx = 1:numTimeSteps(i);
loss(i) = crossentropy(dlY(:,i,idx),dlT(:,i,idx),'DataFormat','CBT');
end
end
  댓글 수: 6
Javier Bush
Javier Bush 2019년 10월 26일
Thanks, I can change miniBatchSize now.
Zekun
Zekun 2019년 12월 29일
편집: Walter Roberson 2019년 12월 30일
I found another solution for
"Error using gpuArray/subsasgn
Attempt to grow array along ambiguous dimension."
In dlarray/parenAssign.m, at this location:"\R2019b\toolbox\nnet\deep\@dlarray\parenAssign.m"
Line 15:
obj = zeros(0, 0, 'like', rhs);
Replace line 15 with the following 2 lines:
szrhs = size(rhs);
obj = zeros(szrhs(1), szrhs(2), 'like', rhs);
Users cannot directly edit this file, so I backed it up and replace it with a new file.

댓글을 달려면 로그인하십시오.

추가 답변 (2개)

Javier Bush
Javier Bush 2019년 10월 16일
Thanks it worked!

Linda Koletsou Soulti
Linda Koletsou Soulti 2019년 10월 22일
Thank you for reporting the issue. The error you are getting is related to an attempt to grow a gpuArray using linear indexing assignment.
For more information please refer to the following bug report:
  댓글 수: 1
Javier Bush
Javier Bush 2019년 10월 23일
Linda,
I just changed the miniBatchSize to 2, in the same example and I get the following error, could you please help me with that? I think this is a bug because that is offered as a parameter in the example but you cannot change it.
Index exceeds the number of array elements (1).
Error in SeqToSeqClassificationUsing1DConvAndModelFunctionExample>maskedCrossEntropyLoss (line 486)
idx = 1:numTimeSteps(i);
Error in SeqToSeqClassificationUsing1DConvAndModelFunctionExample>modelGradients (line 472)
loss = maskedCrossEntropyLoss(dlY, dlT, numTimeSteps);
Error in deep.internal.dlfeval (line 18)
[varargout{1:nout}] = fun(x{:});
Error in dlfeval (line 40)
[varargout{1:nout}] = deep.internal.dlfeval(fun,varargin{:});
Error in SeqToSeqClassificationUsing1DConvAndModelFunctionExample (line 287)
[gradients, loss] = dlfeval(@modelGradients,dlX,Y,parameters,hyperparameters,numTimeSteps);

댓글을 달려면 로그인하십시오.

카테고리

Help CenterFile Exchange에서 Sequence and Numeric Feature Data Workflows에 대해 자세히 알아보기

태그

제품

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by