Optimisation of function containing matrix

조회 수: 10 (최근 30일)
Isabelle Steinmann
Isabelle Steinmann 2019년 10월 10일
댓글: Isabelle Steinmann 2019년 10월 11일
I am having trouble optimising this system. I have been trying to use fmincon without success.
C is a 16x16 matrix, mo and v and 1 are 16x1 vectors. I want to choose mo to maximise x = c*mo+v
The constraints are: the components of mo must add to one (I think I've done this one)
and each component of x should be equal, that is x1=x2=...=x16 where x=c*mo+v (I have no idea how to represent this)
fun = @(mo) -C*mo-v;
A=[];
b=[];
Aeq= ones(1,16);
beq= 1;
lb = zeros(16,1);
ub = ones(16,1);
m0 = 1/16*ones(16,1);
mo = fmincon(fun,m0,A,b,Aeq,beq,lb,ub)
Please let me know where I'm going wrong...
  댓글 수: 3
Isabelle Steinmann
Isabelle Steinmann 2019년 10월 10일
C =
Columns 1 through 10
1.0003 0.0245 0.0052 0.0172 0.0273 0.0220 0.0171 0.0208 0.0073 0.0218
0.0054 0.9994 0.0100 0.0326 0.0329 0.0369 0.0173 0.0155 0.0224 0.0269
0.0152 0.0097 1.0001 0.0173 0.0374 0.0220 0.0222 0.0208 0.0174 0.0219
0.0001 -0.0000 0.0000 1.0005 0.0255 0.0054 0.0103 0.0101 0.0007 0.0057
0.0001 -0.0000 0.0000 0.0056 1.0006 0.0103 0.0052 0.0050 0.0055 0.0204
0.0001 -0.0003 -0.0000 0.0059 0.0108 1.0007 0.0009 -0.0097 0.0156 0.0054
0.0001 -0.0001 -0.0000 0.0112 0.0110 0.0255 1.0005 0.0001 0.0359 0.0105
0.0001 -0.0001 -0.0000 0.0112 0.0110 -0.0041 0.0257 1.0004 0.0262 0.0156
0.0000 -0.0003 -0.0000 0.0205 0.0008 0.0005 0.0005 0.0002 1.0005 0.0003
0.0001 -0.0001 -0.0000 0.0157 0.0011 0.0105 0.0056 0.0053 0.0108 1.0004
0.0001 -0.0002 -0.0000 0.0111 0.0210 0.0157 0.0162 0.0152 0.0213 0.0009
0.0000 -0.0003 -0.0000 0.0107 0.0154 0.0007 0.0150 -0.0000 0.0155 0.0054
0.0050 -0.0104 -0.0001 0.0213 0.0212 0.0164 0.0456 0.0151 0.0169 0.0159
-0.0001 -0.0200 -0.0001 0.0095 -0.0004 0.0092 -0.0102 -0.0052 -0.0006 0.0047
0.0000 -0.0101 -0.0001 0.0102 0.0054 0.0151 0.0006 -0.0099 0.0002 0.0001
0.0100 -0.0000 0.0000 0.0158 0.0309 0.0058 0.0007 0.0005 0.0057 0.0158
Columns 11 through 16
0.0213 0.0179 0.0317 0.0165 0.0165 0.0064
0.0068 0.0479 0.0367 0.0270 0.0316 0.0213
0.0216 0.0228 0.0316 0.0167 0.0164 0.0163
0.0005 0.0055 0.0002 0.0003 0.0002 0.0155
0.0007 0.0007 0.0003 0.0003 0.0002 0.0203
0.0152 0.0307 0.0204 0.0109 0.0107 0.0002
0.0158 0.0264 0.0008 0.0110 0.0007 0.0104
0.0158 0.0212 0.0054 0.0009 0.0055 0.0106
0.0149 0.0205 0.0053 0.0203 0.0053 0.0002
0.0205 0.0060 0.0056 0.0005 0.0054 0.0152
1.0009 0.0214 0.0204 0.0010 0.0058 0.0006
0.0002 1.0008 0.0004 0.0153 0.0200 0.0005
0.0159 0.0169 1.0008 0.0257 0.0202 0.0009
-0.0150 0.0041 0.0043 0.9998 -0.0103 -0.0002
0.0002 0.0151 0.0199 0.0004 1.0003 -0.0000
0.0154 0.0108 0.0057 0.0104 0.0054 1.0008
v is a zero vector
Fabio Freschi
Fabio Freschi 2019년 10월 11일
It is better to attach data as mat file

댓글을 달려면 로그인하십시오.

채택된 답변

Fabio Freschi
Fabio Freschi 2019년 10월 10일
편집: Fabio Freschi 2019년 10월 11일
While waiting for the data, I try to solve one of the questions. you can set the missing constraint as
x1-x2 = 0
x2-x3 = 0
...
so, let's call M the matrix with +1 -1 along the diagonal
M = diag(ones(16,1),0)+diag(-ones(15,1),1);
The last row has to be removed
% remove last row
M = M(1:end-1,:);
now, x = C*mo+v and we want M*x = 0, so Mx = M*C*mo+M*v = 0 and the new equality constraint is
% new constraints
Aeq2 = M*C;
beq2 = -M*v;
% append
Aeq = [Aeq; Aeq2];
beq = [beq; beq2];
However, the main problem is that your objective function returns a vector and not a scalar quantity. I don't know your problem but is the sum of all x a feasible objective function to maximize?
fun = @(mo) -sum(C*mo+v);
In this case the solution is
>> mo
mo =
0.0549
0.0481
0.0524
0.0668
0.0672
0.0644
0.0615
0.0627
0.0661
0.0655
0.0623
0.0653
0.0570
0.0737
0.0689
0.0633
>> sum(mo)
ans =
1
>> C*mo
ans =
0.0720
0.0720
0.0720
0.0720
0.0720
0.0720
0.0720
0.0720
0.0720
0.0720
0.0720
0.0720
0.0720
0.0720
0.0720
0.0720
  댓글 수: 4
Fabio Freschi
Fabio Freschi 2019년 10월 11일
Isabelle, is it what you want?
Isabelle Steinmann
Isabelle Steinmann 2019년 10월 11일
Yes, that's perfect. Thank you

댓글을 달려면 로그인하십시오.

추가 답변 (0개)

카테고리

Help CenterFile Exchange에서 Systems of Nonlinear Equations에 대해 자세히 알아보기

태그

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by