Replace the fmincon function with another optimization algorithm
조회 수: 10 (최근 30일)
이전 댓글 표시
In this source code, how can I replace the fmincon function with PSO or GA optimization algorithm (I do not want to use a build-in function).
x0 = [1 1]; % Starting point
UB = [1 1]; % Upper bound
LB = [0 0]; % Lower bound
options = optimset('LargeScale', 'off', 'MaxFunEvals', 1000, ...
'TolFun', 1e-6, 'TolCon', 1e-6, 'disp', 'off');
% Create constraint bound vector:
n = 50; % Number of Pareto points
eps_min = -1;
eps_max = 0;
eps = eps_min:(eps_max - eps_min)/(n-1):eps_max;
% Solve scalarized problem for each epsilon value:
xopt = zeros(n,length(x0));
for i=1:n
xopt(i,:)=fmincon('obj_eps', x0, [], [], [], [], LB, UB,...
'nonlcon_eps', options, eps(i));
end
function [C,constraintViolation] = nonlcon_eps(x, eps)
constraintViolation= 0;
Ceq = [];
C(1) =x(2)+(x(1)-1)^3;
if C(1) > 0
constraintViolation= constraintViolation+ 1;
end
C(2) = -x(1) - eps;
if C(2) > 0
constraintViolation= constraintViolation+ 1;
end
function f = obj_eps(x, ~)
f = 2*x(1)-x(2);
This part:
for i=1:n
xopt(i,:)=fmincon('obj_eps', x0, [], [], [], [], LB, UB,'nonlcon_eps', options, eps(i));
end
Becomes:
maxIteration = 1000;
dim = 2;
n = 50; % Number of Pareto points
eps_min = -1;
eps_max = 0;
EpsVal = eps_min:(eps_max - eps_min)/(n-1):eps_max;
for i=1:n
[gbest]= PSOalgo(N,T,lb,ub,dim,fobj,fcon,EpsVal(i));
end
function [gbest]= PSOalgo(N,maxite,lb,ub,dim,fobj,fcon,EpsVal)
% initialization
wmax=0.9; % inertia weight
wmin=0.4; % inertia weight
c1=2; % acceleration factor
c2=2; % acceleration factor
% pso initialization
X=initialization(N,dim,ub,lb);
v = 0.1*X; % initial velocity
for i=1:N
fitnessX(i,1)= fobj(X(i,:));
end
[fmin0,index0]= min(fitnessX);
pbest= X; % initial pbest
pbestfitness = fitnessX;
gbest= X(index0,:); % initial gbest
gbestfitness = fmin0;
ite=0; % Loop counter
while ite<maxite
w=wmax-(wmax-wmin)*ite/maxite; % update inertial weight
% pso velocity updates
for i=1:N
for j=1:dim
v(i,j)=w*v(i,j)+c1*rand()*(pbest(i,j)- X(i,j)) + c2*rand()*(gbest(1,j)- X(i,j));
end
end
% pso position update
for i=1:N
for j=1:dim
X(i,j)= X(i,j)+v(i,j);
end
% Check boundries
FU=X(i,:)>ub;
FL=X(i,:)<lb;
X(i,:)=(X(i,:).*(~(FU+FL)))+ub.*FU+lb.*FL;
% evaluating fitness
fitnessX(i,1) = fobj(X(i,:));
[~,consentViolation(i,1)] = fcon(X(i,:), EpsVal);
end
% updating pbest and fitness
for i=1:N
if fitnessX(i,1) < pbestfitness(i,1) && constraintViolation(i,1) == 0
pbest(i,:)= X(i,:);
pbestfitness(i,1)= fitnessX(i,1);
end
[~,constraintViolation(i,1)] = fcon(pbest(i,:), EpsVal);
end
% updating gbest and best fitness
for i=1:N
if pbestfitness(i,1)<gbestfitness && constraintViolation(i,1) == 0
gbest=pbest(i,:);
gbestfitness= pbestfitness(i,1);
end
end
ite = ite+1;
end
end
The obtained result by using PSO algorithm is not correct.
fmincon () result:
PSO algorithm result:
댓글 수: 7
Walter Roberson
2019년 10월 20일
https://www.mathworks.com/matlabcentral/fileexchange/25986-constrained-particle-swarm-optimization appears to be pso with nonlinear constraint capability.
답변 (0개)
참고 항목
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!