Scaling of vectorized code which is limited by memory access
조회 수: 1 (최근 30일)
이전 댓글 표시
Dear all,
what possibilities are there to make a vectorized code faster, where the speed is limited by memory access?
I have attached two runs on two different machines with the same vectorized MATLAB code. Here var_z_analyse is a huge array of fixed size, which will be accessed/querried by a long list of indices which may vary in size and content for each call. May parfor be a solution in this context?
For example the first line does not benefit from 4 to 18 cores, whereas the last two lines scale very well.
- first machine has 4 cores on one node
- seconde machine has 18 cores on one node
Regards
댓글 수: 11
채택된 답변
Bruno Luong
2019년 8월 11일
편집: Bruno Luong
2019년 8월 11일
Here is my C-mex implementation, on my laptop it accelerates by 20 fold from your original MATLAB code (compiled with MSVS 2017, 1 thread)
N=19012;
M=130000;
u_xi = rand(1,M);
u_eta = rand(1,M);
a_I = ceil(rand(1,M)*N);
var_z_analyse = rand(3,3,N);
tic
for i=1:1000
V_x = zeros(3,1,M);
V_y = zeros(1,3,M);
A = var_z_analyse(:,:,a_I);
V_x(2,1,:) = u_xi(:);
V_x(1,1,:) = 1;
V_x(3,1,:) = V_x(2,1,:).*V_x(2,1,:);
V_y(1,2,:) = u_eta(:);
V_y(1,1,:) = 1;
V_y(1,3,:) = V_y(1,2,:).*V_y(1,2,:);
outer_product = bsxfun(@times,V_x,V_y);
u_z = sum(sum(outer_product.*A,1),2);
end
toc % 21.871430 seconds.
tic
for i=1:1000
u_z_mex = hash(u_xi,u_eta,var_z_analyse,a_I);
end
toc % 1.057965 seconds.
norm(u_z_mex(:) - u_z(:)) / norm(u_z(:)) % 7.5515e-17
The hash.c C-mex code (quick and dirty without checking correctness of the input)
/*************************************************
* CALLING:
* >> u_z_mex = hash(u_xi,u_eta,var_z_analyse,a_I);
* COMPILING:
* >> mex -O hash.c
************************************************/
#include "mex.h"
#include "matrix.h"
#define XI prhs[0]
#define ETA prhs[1]
#define VAR_Z_ANALYSE prhs[2]
#define A_I prhs[3]
#define UZ plhs[0]
void mexFunction(int nlhs, mxArray *plhs[],
int nrhs, const mxArray *prhs[])
{
int i,j,k,M;
double xi_k_pow[3], eta_k, xi_k, etap, s, ss;
double *Ak, *u_eta, *u_xi, *a_I, *uz, *var_z_analyse;
var_z_analyse = (double*)mxGetData(VAR_Z_ANALYSE);
u_eta = (double*)mxGetData(ETA);
u_xi = (double*)mxGetData(XI);
a_I = (double*)mxGetData(A_I);
M = (int)mxGetNumberOfElements(A_I);
UZ = mxCreateDoubleMatrix(1,M,mxREAL);
uz = (double*)mxGetData(UZ);
xi_k_pow[0] = 1;
for (k=M; k--;)
{
Ak = var_z_analyse + 9*((int)(*a_I++)-1);
eta_k = *u_eta++;
xi_k = *u_xi++;
xi_k_pow[1] = xi_k;
xi_k_pow[2] = xi_k*xi_k;
etap = 1.0;
s = 0.0;
for (i=3; i--;)
{
ss = 0.0;
for (j=0; j<3; j++) ss += xi_k_pow[j] * *(Ak++);
s += etap * ss;
etap *= eta_k;
}
*uz++ = s;
}
}
댓글 수: 6
Bruno Luong
2019년 8월 11일
Folding for-loop variant code, 10% faster still
/*************************************************
* CALLING:
* >> u_z_mex = hash(u_xi,u_eta,var_z_analyse,a_I);
* COMPILING:
* >> mex -O hash.c
************************************************/
#include "mex.h"
#include "matrix.h"
#define XI prhs[0]
#define ETA prhs[1]
#define VAR_Z_ANALYSE prhs[2]
#define A_I prhs[3]
#define UZ plhs[0]
void mexFunction(int nlhs, mxArray *plhs[],
int nrhs, const mxArray *prhs[])
{
int k, M;
double eta_k, xi_k, s, ss;
double *Ak, *u_eta, *u_xi, *a_I, *uz, *var_z_analyse;
var_z_analyse = (double*)mxGetData(VAR_Z_ANALYSE);
u_eta = (double*)mxGetData(ETA);
u_xi = (double*)mxGetData(XI);
a_I = (double*)mxGetData(A_I);
M = (int)mxGetNumberOfElements(A_I);
UZ = mxCreateDoubleMatrix(1,M,mxREAL);
uz = (double*)mxGetData(UZ);
for (k=M; k--;)
{
Ak = var_z_analyse + 9*(int)(*a_I++);
eta_k = *u_eta++;
xi_k = *u_xi++;
s = *(--Ak);
s = s*xi_k + *(--Ak);
s = s*xi_k + *(--Ak);
ss = *(--Ak);
ss = ss*xi_k + *(--Ak);
ss = ss*xi_k + *(--Ak);
s = s*eta_k + ss;
ss = *(--Ak);
ss = ss*xi_k + *(--Ak);
ss = ss*xi_k + *(--Ak);
*uz++ = s*eta_k + ss;
}
}
추가 답변 (0개)
참고 항목
카테고리
Help Center 및 File Exchange에서 MATLAB Compiler에 대해 자세히 알아보기
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!