cross validation in neural network using K-fold
조회 수: 4 (최근 30일)
이전 댓글 표시
Dear All;
i am using neural network for classification but i need to use instead of holdout option , K-fold.
i use cvparatition command to do that , which parameter of neural network shall i change to enable K-Fold option
the code
c = cvpartition(length(input1),'KFold',10)
net=patternnet(100)
net=train(net,input',Target_main')
댓글 수: 0
답변 (1개)
Greg Heath
2019년 7월 18일
%i am using neural network for classification but i need to use instead of
holdout option , K-fold.
==> FALSE!. You mean you WANT to use K-fold.
% i use cvparatition command to do that , which parameter of neural
network shall i change to enable K-Fold option the code
%c = cvpartition(length(input1),'KFold',10)
% net=patternnet(100)
==> WRONG! numH = 100 is ridiculously large.
There is no excuse for this. There are numerous examples in both the
NEWSGROUP and ANSWERS on how to choose a reasonable value
for numH.
Greg
참고 항목
카테고리
Help Center 및 File Exchange에서 Sequence and Numeric Feature Data Workflows에 대해 자세히 알아보기
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!