How to using bayesopt function for a GP model
조회 수: 4 (최근 30일)
이전 댓글 표시
Hi, I need to use bayesopt function for a GP model but it returns NaN and Error. I used the code below and the x is a 2 * n matrix and y is a 1*n matrix. Can anyone help me?
num = optimizableVariable('n',[1,10],'Type','integer');
dst = optimizableVariable('dst',{'chebychev','euclidean','minkowski'},'Type','categorical');
results = bayesopt(@(params)fitrgp(x',y,'Sigma',0.1),[num,dst],'Verbose',0,...
'AcquisitionFunctionName','expected-improvement-plus')
댓글 수: 0
채택된 답변
Don Mathis
2019년 6월 21일
It looks like you're basing your code on this example, which is a good starting point: https://www.mathworks.com/help/stats/bayesopt.html?searchHighlight=bayesopt&s_tid=doc_srchtitle#bvamydy-2
But it seems you removed some important parts, like the call to kfoldLoss for example.
I would recommend starting with that example and making incremental changes to turn it into a solution to your problem. And reading the bayesopt documentation.
추가 답변 (0개)
참고 항목
카테고리
Help Center 및 File Exchange에서 Model Building and Assessment에 대해 자세히 알아보기
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!