필터 지우기
필터 지우기

i need help to understand the steps of this code

조회 수: 1 (최근 30일)
Bekhtaoui Abdelhakim
Bekhtaoui Abdelhakim 2019년 5월 28일
댓글: Image Analyst 2019년 5월 29일
hi everyone please can someone explain to me the steps of this program ?
its a coherence filter program
thanks for helping
%%%
function myCEDnew( )
myalpha = 0.001; sigma=0.7; T = 15; rho = 4; C= 1;
im = imread('../images/2.png');
[numrow, numcol] = size(im);
imorig = im;
stepT=0.15;
t = 0;
im=double(im);
while (t < (T-0.001))
t = t + stepT;
%% 1 gaussian K_sigma
limitX=-ceil(2*sigma):ceil(2*sigma);
kSigma = exp(-(limitX.^2/(2*sigma^2)));
kSigma = kSigma/sum(kSigma(:));
usigma=imfilter(imfilter(im,(kSigma'), 'same' ,'replicate'),kSigma, 'same' ,'replicate');
%% Gradient
[uy,ux]=gradient(usigma);
%% 3 gaussian K_rho
limitXJ=-ceil(3*rho):ceil(3*rho);
kSigmaJ = exp(-(limitXJ.^2/(2*rho^2)));
kSigmaJ = kSigmaJ/sum(kSigmaJ(:));
Jxx = imfilter(imfilter((ux.^2),(kSigmaJ'), 'same' ,'replicate'),kSigmaJ, 'same' ,'replicate');
Jxy = imfilter(imfilter((ux.*uy),(kSigmaJ'), 'same' ,'replicate'),kSigmaJ, 'same' ,'replicate');
Jyy = imfilter(imfilter((uy.^2),(kSigmaJ'), 'same' ,'replicate'),kSigmaJ, 'same' ,'replicate');
%% Principal axis transformation
% Eigenvectors of J, v1 and v2
v2x = zeros(numrow, numcol);
v2y = zeros(numrow, numcol);
lambda1 = zeros(numrow, numcol);
lambda2 = zeros(numrow, numcol);
for i=1:numrow
for j=1:numcol
pixel = [Jxx(i,j), Jxy(i,j); Jxy(i,j), Jyy(i,j)];
[pixelV, pixelD] = eig(pixel);
v2x(i,j) = pixelV(1,2);
v2y(i,j) = pixelV(2,2);
lambda1(i,j) = pixelD(1,1);
lambda2(i,j) = pixelD(2,2);
if((v2x(i,j)^2)+(v2y(i,j)^2)==0)
abcd=0;
else
v2x(i,j) = v2x(i,j)/(sqrt((v2x(i,j)^2)+(v2y(i,j)^2)));
v2y(i,j) = v2y(i,j)/(sqrt((v2x(i,j)^2)+(v2y(i,j)^2)));
end;
end;
end;
v1x = -v2y;
v1y = v2x;
%% Calculation of diffusion matrix
di=(lambda1-lambda2);
lambda1 = myalpha + (1 - myalpha)*exp(-C./(di).^(2));
lambda2 = myalpha;
Dxx = lambda1.*v1x.^2 + lambda2.*v2x.^2;
Dxy = lambda1.*v1x.*v1y + lambda2.*v2x.*v2y;
Dyy = lambda1.*v1y.^2 + lambda2.*v2y.^2;
%% Non negativity discretization scheme referred from http://citeseer.ist.psu.edu/viewdoc/download;jsessionid=16CCEAD1A72E6A1CC960DF99795D62B7?doi=10.1.1.21.632&rep=rep1&type=pdf
im=non_negativity_discretization(im,Dxx,Dxy,Dyy,stepT);
end;
%% output
figure(1);
subplot(1, 2, 1);
imagesc(imorig);
title('Original image');
colormap('Gray');
daspect ([1 1 1]);
subplot(1, 2, 2);
imagesc(im);
title('Coherence Enhancing Diffusion Filtering');
colormap('Gray');
daspect ([1 1 1]);
figure(2);
subplot(1, 2, 1);
imagesc(imorig);
title('Original image');
colormap('Gray');
daspect ([1 1 1]);
subplot(1, 2, 2);
imagesc(atan2(double(uy), double(ux)));
title('Orientation of smooth gradient');
colormap('Gray');
daspect ([1 1 1]);
imwrite((uint8(im)), '../images/2CED.png');
end
function im=non_negativity_discretization(im,Dxx,Dxy,Dyy,stepT)
% Make positive and negative indices
[numrow,numcol] = size(im);
px = [2:numrow,numrow]; nx = [1,1:numrow-1];
py = [2:numcol,numcol]; ny = [1,1:numcol-1];
% In literature a,b and c are used as variables
a=Dxx;b=Dxy;c=Dyy;
% Stencil Weights
wbR1 = (0.25)*((abs(b(nx, py))-b(nx,py)) + (abs(b)-b));
wtM2 = (0.5)*( (c(:, py)+c) -(abs(b(:,py))+abs(b)));
wbL3 = (0.25)*((abs(b(px, py))+b(px,py)) + (abs(b)+b));
wmR4 = (0.5)*( (a(nx,: )+a) -(abs(b(nx,:))+abs(b)));
wmL6 = (0.5)*( (a(px,: )+a) -(abs(b(px,:))+abs(b)));
wtR7 = (0.25)*((abs(b(nx, ny))+b(nx,ny)) + (abs(b)+b));
wmB8 = (0.5)*( (c(:, ny)+c) -(abs(b(:,ny))+abs(b)));
wtL9 = (0.25)*((abs(b(px, ny))-b(px,ny)) + (abs(b)-b));
im= im+stepT*(wbR1.*(im(nx,py) -im(:,:))+wtM2.*(im(:, py) -im(:,:))+wbL3.*(im(px,py) -im(:,:))+wmR4.*(im(nx,:) -im(:,:))+ ...
wmL6.*(im(px,:) -im(:,:))+ wtR7.*(im(nx,ny) -im(:,:))+ wmB8.*(im(:, ny) -im(:,:))+ wtL9.*(im(px,ny) -im(:,:)));
end
  댓글 수: 1
Image Analyst
Image Analyst 2019년 5월 29일
I doubt any of us can/would, but the authors probably would. Have you asked them?

댓글을 달려면 로그인하십시오.

답변 (0개)

제품

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by