Parallel Matrix row operation

조회 수: 19 (최근 30일)
Rui Xiang
Rui Xiang 2019년 5월 21일
댓글: Matt J 2019년 5월 22일
Hi, I have a function which project a matrix to the matrix space with row sum equal to 1 and constrained by a sparsity structure. Here is the code
function [out] = Proj_DoubleStochasticM_reloc(Y)
global sparsity
Y = full(Y);
ii = [];
jj = [];
ss = [];
for i=1:length(sparsity)
ii = [ii;ones(size(sparsity{i}))*i];
jj = [jj;sparsity{i}];
ss = [ss Y(i,sparsity{i}) - (sum(Y(i,sparsity{i}))-1)/length(sparsity{i})];
end
[n,m] = size(Y);
out = sparse(ii, jj', ss', n,m);
So basically, the input is sparse. After I transform it to full, then a do a for loop on each row. The operation in each row is
Y(i,sparsity{i}) - (sum(Y(i,sparsity{i}))-1)/length(sparsity{i})
e.g
input = [1 2 3 4 5]
sparisty = [1 2]
then output is [1-(1+2-1)/2, 2-1-(1+2-1)/2, 0, 0, 0]
I was wondering whether there are any parallel approaches to do it, or direct methods on sparse matrix. Currently the most expensive line is last one, and full(), namely, transform sparsity; second is the for loop.
Thank you very much:)

채택된 답변

Matt J
Matt J 2019년 5월 21일
편집: Matt J 2019년 5월 22일
function out = Proj_DoubleStochasticM_reloc(Y,sparsity)
[m,n]=size(Y);
[I,J]=deal(sparsity);
for k=1:length(sparsity)
I{k}(:)=k;
end
I=cell2mat(I); J=cell2mat(J);
bw=sparse(I,J,true,m,n);
Y=Y.*bw;
out=Y-bw.*(sum(Y,2)-1)./sum(bw,2); %EDITED
end
  댓글 수: 2
Rui Xiang
Rui Xiang 2019년 5월 22일
Thanks very much! It worked perfectly!
Matt J
Matt J 2019년 5월 22일
I think I had a mistake. I think the last line should be
out=Y-bw.*(sum(Y,2)-1)./sum(bw,2);

댓글을 달려면 로그인하십시오.

추가 답변 (0개)

카테고리

Help CenterFile Exchange에서 Loops and Conditional Statements에 대해 자세히 알아보기

제품


릴리스

R2019a

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by