objective function in Bayesian Optimization Algorithm like fitrsvm and fitrgp

조회 수: 6 (최근 30일)
Hello,
What is the mathematical objective function in the bayesian optimization algorithm? The explanation says that the algorithm like fitrsvm tries to minimize the log(1 + cross-validation loss) but what is the real mathematical formula?
Is it possible to change the objective function to just the MSE?
Thank you!
Dimitri

채택된 답변

Don Mathis
Don Mathis 2019년 5월 13일
This page says that the loss defaults to MSE. So that's the loss that's used in the log(1+cvloss) formula. Cross validated loss is the loss summed over all the held-out validation sets. The default when using optimization is 5-fold cross-validation.
There's not an option to change the hyperparameter optimization objective function from log(1+cvloss). You would need to edit the source code to do that. The source file is matlab\toolbox\stats\classreg\+classreg\+learning\+paramoptim\createObjFcn.m. Look for the call to the log1p function.
  댓글 수: 3
Don Mathis
Don Mathis 2019년 5월 14일
편집: Don Mathis 2019년 5월 14일
Because loss(Mdl,X,Y) is the loss of the final model on the full dataset, while the MinObjective is the log of 1 plus the out-of-sample cross-validated loss. See the kfoldLoss method for documentation of that. If you used 5-fold cross-validation, the kfoldLoss is the summed loss of 5 different models, each on 1/5 of the dataset. It is not the loss of the final model on the full dataset.
antlhem
antlhem 2021년 5월 29일
Hi, Could take a look into my question? https://uk.mathworks.com/matlabcentral/answers/842800-why-matlab-svr-is-not-working-for-exponential-data-and-works-well-with-data-that-fluctuates?s_tid=prof_contriblnk

댓글을 달려면 로그인하십시오.

추가 답변 (0개)

카테고리

Help CenterFile Exchange에서 Support Vector Machine Regression에 대해 자세히 알아보기

제품


릴리스

R2019a

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by