필터 지우기
필터 지우기

Unknown Future Prediction by Using ANN

조회 수: 4 (최근 30일)
Hatice GENÇ KAVAS
Hatice GENÇ KAVAS 2019년 4월 14일
댓글: Hatice GENÇ KAVAS 2019년 4월 17일
Hi, I am trying to predict future consumption values (2018-2038). But something is wrong with my code I guess. This is a time series of consumption. I can fit real samples and predicted samples with a high score (like %99). But when I come to the end (predict part) after nearly 2 or 4 steps ahead values start to being same. I think it is about normalization, becouse consumption have to increase because of its past and the maximum limit is 1 so values cant go further and it stays under 1. when I use another code for normalization like Xn=normalize(Xn) network cant find any correlation (NaN).
Apart from these when I normalize by using this way how can I denormalize the samples. what will be the maximum and minimum values after training. I am writing the code below. Thanks in advance.
xv=load('elektriktek.txt');
xn=xv';
xn=(xn-min(xn))/((max(xn)-min(xn)));
figure,plot(xn)
data=[xn(1,1:end-10);xn(1,2:end-9);xn(1,3:end-8);xn(1,4:end-7);xn(1,5:end-6);xn(1,6:end-5);xn(1,7:end-4);xn(1,8:end-3);xn(1,9:end-2);xn(1,10:end-1)];%%%%5 giriþ 1 ileri tahmin
groups=xn(1,11:end);
data=data';
groups=groups';
indices = crossvalind('Kfold',length(data),3);%%%%
TestMSE_toplam=zeros(3,1);
TestMAE_toplam=zeros(3,1);
for i = 1:3
testy = (indices == i);
testy=testy;
trainy = (~testy);
trainy=trainy;
TestInputData=data(testy,:)';
TrainInputData=data(trainy,:)';
TestOutputData=groups(testy,:)';
TrainOutputData=groups(trainy,:)';
Tahmin=zeros(size(TestOutputData));
Ref=zeros(size(TestOutputData));
for m=1:10
rand('seed',1);
randn('seed',1);
net=newff(minmax(TrainInputData(:,:)),[m 1],{'tansig','tansig','purelin'},'trainlm');
net.trainParam.epochs=300;
net.trainParam.show=20;
%net.trainparam.lr=0.01;
net.trainparam.goal=0.00001;
[net,tr]=train(net,TrainInputData,TrainOutputData);
TrainOutput=sim(net,TrainInputData);
TrainMSE(m,1)=mse(TrainOutputData-TrainOutput);
TrainMAE(m,1)=mae(TrainOutputData-TrainOutput);
TrainReport=[TrainOutput'];
TestOutput=sim(net,TestInputData);
TestMSE(m,1)=mse(TestOutputData-TestOutput);
TestMAE(m,1)=mae(TestOutputData-TestOutput);
traintime(m,1)=sum(tr.time);
end;
[a2,b2]=find(TestMSE==min(min(TestMSE)));
[ax,bx]=find(a2==min(a2))
a2=a2(ax,bx)
b2=b2(ax,bx)
axx(i,1)=a2;
bxx(i,1)=b2;
TestMSE_son(i,1)=TestMSE(a2,b2);
TestMAE_son(i,1)=TestMAE(a2,b2);
traintime_son(i,1)=traintime(a2,b2);
%figure,plot(TestOutputData,'O'); hold on; plot(TestOutput,'*'); hold off
rand('seed',1);
randn('seed',1);
net=newff(minmax(TrainInputData(:,:)),[a2 1],{'tansig','tansig','purelin'},'trainlm');
net.trainParam.epochs=500;
net.trainParam.show=20;
%net.trainparam.lr=0.01;
net.trainparam.goal=0.00001;
[net,tr]=train(net,TrainInputData,TrainOutputData);
TestOutput=sim(net,TestInputData);
TestMSE_son(i,1)=mse(TestOutputData-TestOutput)
TestMAE_son(i,1)=mae(TestOutputData-TestOutput)
TrainMSE_son(i,1)=mse(TrainOutputData-TrainOutput)
TrainMAE_son(i,1)=mae(TrainOutputData-TrainOutput)
R2 = corrcoef(TestOutputData,TestOutput);
R22(i,1)= R2(1,2)^2
[m1,n1,r]=postreg(TestOutputData,TestOutput);
Reg(i,1)=r;
figure,plot(TestOutputData,'-O'); hold on; plot(TestOutput,'-*'); hold off
Tahmin=Tahmin+TestOutput;
Ref=Ref+TestOutputData;
end;
Tahmin_Test=Tahmin/3;
Ref_Data=Ref/3;
%%%%%%%%%%%%%%%%%%
TestMSE=(sum(TestMSE_son))/3
TestMAE=(sum(TestMAE_son))/3
TrainMSE=(sum(TrainMSE_son))/3
TrainMAE=(sum(TrainMAE_son))/3
Corr_R=(sum(R22))/3
Reg_R=sum((Reg))/3
figure,plot(Ref_Data);hold on; plot(Tahmin_Test,'r')
fid1 = fopen('hatalar_ysa.txt','w+');
fprintf(fid1,'TestMSE = %12.6f\n',TestMSE);
fprintf(fid1,'TestMAE = %12.6f\n',TestMAE);
fprintf(fid1,'TrainMSE = %12.6f\n',TrainMSE);
fprintf(fid1,'Corr_R = %12.6f\n',Corr_R);
fprintf(fid1,'Reg_R = %12.6f\n',Reg_R);
miktar=20 %miktar means number of step
tahmin=zeros(miktar,1); %Tahmin means prediction
test1=[xn(1,end-9);xn(1,end-8);xn(1,end-7);xn(1,end-6);xn(1,end-5);xn(1,end-4);xn(1,end-3);xn(1,end-2);xn(1,end-1);xn(1,end)];
for i=1:miktar;
tahmin(i,1)=sim(net,test1);
testn(1,1)=test1(2,1);
testn(2,1)=test1(3,1);
testn(3,1)=test1(4,1);
testn(4,1)=test1(5,1);
testn(5,1)=test1(6,1);
testn(6,1)=test1(7,1);
testn(7,1)=test1(8,1);
testn(8,1)=test1(9,1);
testn(9,1)=test1(10,1);
testn(10,1)=tahmin(i,1);
test1=testn
end;
figure,plot(tahmin)

채택된 답변

BERGHOUT Tarek
BERGHOUT Tarek 2019년 4월 16일
I attached this file ,use this function it is great for norlmalization, but befor you normalize your data between 0 and 1 , i mean befor training try to do that:
1, load you data
2 save the bellow parameters because you will need them later in denormalizing :
- if your data is a matrix then Xmin=(min(min(data)));Xmax=(max(max(data)));
- if your data is a vector just use one max and one min;
3- normalize your data between 0 and 1;
4- train your data and get your outputs,
5- denormalize your data by: output=scaledata(output,Xmin,Xmax);
please accept my answer if it is helpful.
  댓글 수: 1
Hatice GENÇ KAVAS
Hatice GENÇ KAVAS 2019년 4월 17일
Thank you,I put the code after loading data and I used both way for matrix and vextor. but I couldnt get correlation by using both of them
I wrote it like below;
Xmin=(min(min(xn)));Xmax=(max(max(xn)))
normalize2.png

댓글을 달려면 로그인하십시오.

추가 답변 (0개)

카테고리

Help CenterFile Exchange에서 Sequence and Numeric Feature Data Workflows에 대해 자세히 알아보기

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by