FFT and IFFT: Random Phases
조회 수: 26 (최근 30일)
이전 댓글 표시
I imported a single audio file to MATLAB workspace.
After I apply the FFT:
Y = fft(signal)
How can I random change the audio phases before apply the Inverse FFT and get the 'new_signal'?
new_signal = ifft(Y)
How can I do it?
댓글 수: 0
채택된 답변
Brittany Scheid
2019년 6월 16일
편집: Brittany Scheid
2019년 6월 16일
Following the comment by David Goodmanson above, here is what I used to randomize an array of timeseries data:
function randX = phaseRandomize(X)
% Returns a phase-randomized version of the input data X. If X is an array,
% each row is treated as an independant time series, and columns represent
% sample points.
[N,L]=size(X);
Y=fft(X,[],2); % Get spectrum
% Add random phase shifts (negative for conjugates), preserve DC offset
rnd_theta= -pi + (2*pi).*rand(N,L/2-1);
Y(:,2:L/2)=Y(:,2:L/2).*exp(1i*rnd_theta);
Y(:,L/2+2:L)=Y(:,L/2+2:L).*exp(-1i*flip(rnd_theta,2));
% return phase-randomized data
randX =ifft(Y,[],2);
end
댓글 수: 2
oloo
2023년 2월 21일
Could You please provide code to revert phases back to oryginal signal? of course based on same rnd_theta. Thank You very much.
추가 답변 (1개)
David Goodmanson
2019년 3월 22일
Hi Nycholas,
Assuming signal is real and of length n, n even, then
Y(1) is for frequency 0, the DC contribution, and it's real. Don't mess with that point.
Y(2) and Y(n) are complex conjugates. You can multiply one of that pair by exp(i*theta) and the other by exp(-i*theta), where theta is a random angle with 0 <= theta < 2*pi. the new Y(2) and Y(n) remain complex conugates.
In general from k = 2 to n/2, Y(k) and Y(n+2-k) form a complex conjugate pair. For each of those pairs, do the same kind of multiplcation as above, with a different random angle. Each pair remain complex conjugates.
Y(n/2+1) is real. Don't mess with that point either.
ifft back.
Here the random phases are totally uncorrelated from frequency to frequency, which may or may not be physically realistic.
댓글 수: 3
David Daminelli
2019년 6월 1일
Hello NM and DG! I'm working on a project that needs this same function, and I've done an algorithm that does that. It is here https://www.mathworks.com/matlabcentral/answers/465112-help-with-sound-function, followed by a question I had during the project, if they can help it would be usefull!
참고 항목
카테고리
Help Center 및 File Exchange에서 Transforms에 대해 자세히 알아보기
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!