Hi , please what is the difference between randn and awgn , when adding white gaussian noise to get snr = 10dB , also I see difference in result when using snr function .

조회 수: 2 (최근 30일)
P_rms = rms(signal)^2; %
noisy_signal_1 = awgn(signal,10,'measured');
noisy_signal_2 = signal+0.1*P_rms*randn(L_t,1);
snr1=snr(signal,awgn(signal,10,'measured'))
snr2=snr(signal,noisy_signal_2)
var1=var(noisy_signal_1);
var2=var(noisy_signal_2);

답변 (1개)

Meg Noah
Meg Noah 2025년 8월 7일
They are the same.
% signal is a sine wave of 2 Hz
nSamples = 10000;
f = 2; % [Hz]
time = linspace(0, 2, nSamples+1);
signal = sin(2*pi*f*time);
% calculate the signal power
signalPower = sum((signal).^2)./nSamples;
% SNR in db is 10log(Psignal/Pnoise)
snrDb = 10; % [dB]
% noise power such that signal power is 10 dB more
% 10 = 10 log (Ps / Pn)
% Pn is variance which for zero mean gaussian noise
% is essentially - square sum of all samples -> divided by numSamples
noiseStd = sqrt(signalPower / 10^(snrDb/10));
noiseMean = 0;
% generate the gaussian white noise
noiseValues = noiseStd*randn(nSamples,1) + noiseMean;
% verify the Signal-to-Noise value
noisePower = sum(noiseValues.^2)/numel(noiseValues);
SNR = 10*log10(signalPower/noisePower);
fprintf(1,"noiseStd: model input: %f simulation output: %f\n", noiseStd, std(noiseValues));
noiseStd: model input: 0.223607 simulation output: 0.224735
fprintf(1,"SNR: %f\n", SNR);
SNR: 9.956735
% compare to awgn
noisedSignal = awgn(signal,10,'measured');
awgnNoiseValues = noisedSignal - signal;
awgnNoisePower = sum(awgnNoiseValues.^2)/numel(awgnNoiseValues);
SNR = 10*log10(signalPower/awgnNoisePower);
fprintf(1,"awgnNoiseStd: simulation output: %f\n", std(awgnNoiseValues));
awgnNoiseStd: simulation output: 0.223148
fprintf(1,"SNR: %f\n", SNR);
SNR: 10.018253

카테고리

Help CenterFile Exchange에서 Propagation and Channel Models에 대해 자세히 알아보기

태그

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by