how to make a knn classifer using minkowski distance function

조회 수: 3 (최근 30일)
Apurva Jariwala
Apurva Jariwala 2019년 3월 17일
댓글: Apurva Jariwala 2019년 3월 19일
Need to make a knn classifer without using fitcknn for K = 3, 5, 7, that uses minkowski distance for the order of 1, 2 and 5
  댓글 수: 2
Walter Roberson
Walter Roberson 2019년 3월 17일
Do you mean that you have been given an assignment to write knn classification code yourself?
If so then it would defeat the purpose if we were to give you knn classification code.
Apurva Jariwala
Apurva Jariwala 2019년 3월 19일
I am trying to make a knn classifier and train and test it using the Iris dataset. The objective is to find accuracy and the confusion matrix. Please read the code below and let me know what changes can I make
IrisD = readtable('irisdata.csv');
classes = categorical(IrisD{:,5});
Icats = categories(classes);
setosa = IrisD(strcmp(IrisD{:,5},Icats(1)),:);
Ttest1 = setosa(1:40,:);
Ttrain1 = setosa(41:50,:);
versicolor = IrisD(strcmp(IrisD{:,5},Icats(2)),:);
Ttest2 = versicolor(1:40,:);
Ttrain2 = versicolor(41:50,:);
virginica = IrisD(strcmp(IrisD{:,5},Icats(3)),:);
Ttest3 = virginica(1:40,:);
Ttrain3 = virginica(41:50,:);
Ttest = [Ttest1; Ttest2; Ttest3];
Ttrain = [Ttrain1; Ttrain2; Ttrain3];
testlabel = Ttest(:,5);
trainlabel = Ttrain(:,5);
C = unique(trainlabel);
testf = Ttest(:,1:4);
trainf = Ttrain(:,1:4);
K = 3;
r = 2;
Lpred = [];
for i = 1:size(testf,1)
Ftest = testf(i,:);
Ns = size(trainf, 1);
dmat = abs(trainf-repmat(Ftest, Ns, 1));
dlist = nthroot(sum(dmat.^r, 2), r);
[dsort, isort] = sort(dlist, 'ascend');
Lknn = trainlabel(isort(1:K));
Ncl = [];
for iC = 1:length(C)
cl = C(iC);
ncl = length(find(Lknn==cl));
Ncl = [Ncl; ncl, cl];
end
[vmax, imax] = max(Ncl(:,1));
Cpred = Ncl(imax, 2);
Lpred = [Lpred; Cpred];
end

댓글을 달려면 로그인하십시오.

답변 (0개)

제품

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by