implementation for iterative wiener filter

조회 수: 11 (최근 30일)
gehad attia
gehad attia 2012년 8월 1일
This is my implementation in the iterative wiener filter in this paper : http://www.tsc.uc3m.es/~navia/LATDS07/IterativeWienerFilter.pdf
I wish it will help anyone
function wiener()
clc;
clear;
f=im2double(rgb2gray(imread('lena.jpg')));
imshow(f);
f=imresize(f,[32 32]);
figure,imshow(f)
[r c]=size(f);
h=fspecial('average');
g=imfilter(f,h,'circular');
s_avg = sum(sum(f))/(r*c);
SNR=90;
n_sigma=s_avg/(10^(SNR/20));
n=n_sigma*randn(size(f));
g=g+n;
[Nf,Mf]=size(g);
[Nh,Mh]=size(h);
L1=floor(Nh/2);
L2=floor(Mh/2);
H=zeros(Nf*Mf);
k=1;
for row=1:Mf,
for col=1:Nf,
hh=zeros(Nf,Mf);
hh(1:Nh,1:Mh)=h;
hh=circshift(hh,[col-1-L1,row-1-L2]);
H(k,:)=hh(:)';
k=k+1;
end
end
%%make vector of m^2*1 of the f,n,g
f=reshape(f',size(f,1)*size(f,2),1);
g=reshape(g',size(g,1)*size(g,2),1);
n=reshape(n',size(n,1)*size(n,2),1);
%%%calculate the autocorrelation matrix of f ,g,n
u=mean(g);
g1=autom(g-u);
Rg=toeplitz(g1);
n1=autom(n);
Rn=toeplitz(n1);%%%%%
Rf=Rg;
steps=10;
mse=zeros(1,steps);
for i=1:steps
B=Rf*H'*inv( (H*Rf*H') +Rn);
fHat=B*(g);
Rf=B*Rg*B';
im=reshape(fHat,[32 32]);
g=reshape(g,[32 32]);
%figure,imshow(im',[]);
mse(1,i) = sum(sum((im(:)-g(:))));
g=reshape(g',size(g,1)*size(g,2),1);
end
t=1:steps;
mse
plot(t,mse);
end
function [Rxx]=autom(x)
N=length(x);
Rxx=zeros(1,N);
for m=1: N+1
for n=1: N-m+1
Rxx(m)=(Rxx(m)+x(n)*x(n+m-1))/N-m+1;
end;
end
end
  댓글 수: 2
Walter Roberson
Walter Roberson 2012년 8월 1일
This should probably go into the File Exchange (FEX)
Walter Roberson
Walter Roberson 2012년 8월 1일
Please read the guide to tags and retag this; see http://www.mathworks.co.uk/matlabcentral/answers/43073-a-guide-to-tags

댓글을 달려면 로그인하십시오.

답변 (0개)

카테고리

Help CenterFile Exchange에서 Logical에 대해 자세히 알아보기

태그

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by