機械学習の計算速度を上げるには

조회 수: 1 (최근 30일)
ssk
ssk 2019년 3월 12일
댓글: Kenta 2019년 3월 21일
プログラミング初心者です。
以下のディレクトリ構造に基づき、alexnetの転移学習を数千枚の画像で行ったのですが、
計算結果を出すまでに数日~1週間強かかってしまいます。
精度を保ちつつ計算速度を上げたいと考えておりますが、ご示唆を頂けますでしょうか。
転移学習のリンク:https://jp.mathworks.com/help/deeplearning/examples/transfer-learning-using-alexnet.html
どうぞよろしくお願いいたします。
main
-- a
-- image.dcm(thousands of image file)
 -- b
  -- image.dcm(thousands of image file)
 -- c
  -- image.dcm(thousands of image file)
-- d
  -- image.dcm(thousands of image file)

채택된 답변

Kenta
Kenta 2019년 3월 17일
学習済みネットワークで特徴量抽出をしたあとに、SVMで分類してはどうでしょうか。
この方法にすると計算がはやくなると思います。現在の方法で時間がかかってしまう理由等は、コーディングやパラメータ、ハード類などの情報がないので残念ながらわかりません。
  댓글 수: 3
ssk
ssk 2019년 3월 19일
편집: ssk 2019년 3월 19일
頂いたコードをもとにalexnetで特徴量を抽出後にSVMで分類したところ、格段に計算が早くなりました。ありがとうございます!一つご質問ですが、こちらのコードはGooglenetなど他の学習済みネットワークで特徴量抽出をしたあとに、SVMで分類することは可能という認識でお間違えないでしょうか?
Googlenetでビッグデータのトレーニングをしようとしたところ、当方の環境ではこちらは約1ヶ月程かかりそうですので。。
Kenta
Kenta 2019년 3월 21일
はい、ほかの事前学習済みネットワークで特徴量抽出をしたのちSVMで分類可能です。
もしかしたら、squeezenetなどの比較的小さなネットワークでもよい結果がでるかもしれません。

댓글을 달려면 로그인하십시오.

추가 답변 (0개)

카테고리

Help CenterFile Exchange에서 Statistics and Machine Learning Toolbox에 대해 자세히 알아보기

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!