Crossentropy loss function - What is a good performance goal?

조회 수: 1 (최근 30일)
Mirko Job
Mirko Job 2019년 2월 8일
편집: Greg Heath 2019년 2월 8일
Good Afternoon,
Looking around ANSWER and exploring GOOGLE GROUPS i found this method by Dr. Greg Heath to define a valid training goal for the MSE performance function:
[I,N]=size(x);
[O,N]=size(t);
MSE00a=mean(var(t,0,2));
Ntrn=floor(0.7*N);
Hub=floor((Ntrn-O)/(I+1+O));
MSEgoal=0.01*(Ndof/Ntrneq)*MSE00a;
And i was wondering if there is a similar method to set a Crossentropy reference goal for neural net performance, since i want to experiment different type of loss functions in order to get the best results.
King Regards,

채택된 답변

Greg Heath
Greg Heath 2019년 2월 8일
편집: Greg Heath 2019년 2월 8일
These equations are not necessarily precise.
For example:
data = design + test
design = training + validation
In particular:
Test subset data should not be used to estimate design parameters.
However, since we typically let the training function randomly perform the trn/val/tst division, the separate train/val/tst subsets are not available before training.
That is why I typically design 10 nets for every trial value for the number of hidden nodes.
Hope this helps
Thank you for formally accepting my answer
Greg

추가 답변 (0개)

카테고리

Help CenterFile Exchange에서 Sequence and Numeric Feature Data Workflows에 대해 자세히 알아보기

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by