Training a neural network

조회 수: 4 (최근 30일)
Sam harris
Sam harris 2012년 6월 29일
답변: Greg Heath 2014년 4월 22일
Hi,
I am trying to develop a neural network which predicts an output based on 4 inputs, one of which is the output of the previous step. Currently I am just using a standard function fitting network (not a time-series prediction).
The neural network works really well (r squared approx. 0.98 - 0.99) when the output of the previous step is given independent of the neural network result.
However, when I use the neural network predicted output as the input to the next prediction, the neural network result is virtually worthless. Also, the results differ greatly every time I re-train the network - i.e. it seems the results are very dependent on the initial weights.
I am not sure if this is a problem of overtraining? Any help would be greatly appreciated.
Sam
  댓글 수: 5
Greg Heath
Greg Heath 2012년 9월 4일
Please post this as a new question.
Greg Heath
Greg Heath 2012년 9월 4일
How many data points? How many hidden nodes? Is there a validation set for stopping? Do you get the same type of performace from a matlab demo data set?

댓글을 달려면 로그인하십시오.

채택된 답변

Greg Heath
Greg Heath 2014년 4월 22일
Sam harris on 2 Jul 2012
% Create a Nonlinear Autoregressive Network with External Input
% inputDelays = 1:1; feedbackDelays = 1:1; hiddenLayerSize = 10;
1. What makes you think these are appropriate inputs??
% net =narxnet(inputDelays,feedbackDelays,hiddenLayerSize);
% net.inputs{1}.processFcns = {'removeconstantrows','mapminmax'};
% net.inputs{2}.processFcns = {'removeconstantrows','mapminmax'};
2. Why bother? The last 2 statements are defaults.
% [inputs,inputStates,layerStates,targets] = preparets(net,inputSeries,{},targetSeries);
% net.divideFcn = 'dividerand'; % Divide data randomly
% net.divideMode = 'value'; % Divide up every value
3. The last 2 statements are inappropriate for time series
% net.divideParam.trainRatio = 70/100; net.divideParam.valRatio = 15/100;
% net.divideParam.testRatio = 15/100;
% net.trainFcn = 'trainlm'; % Levenberg-Marquardt
% net.performFcn = 'mse'; % Mean squared error
% net.plotFcns = {'plotperform','plottrainstate','plotresponse', ...
% 'ploterrcorr', 'plotinerrcorr'};
4. Why bother? The last 6 statements are defaults.
% % Train the Network
% [net,tr] =train(net,inputs,targets,inputStates,layerStates);
% if true % code
% end
5. What does "if true ...etc... end" suppose to do?
6. You still have to close the loop and continue training.
7. See

추가 답변 (1개)

Greg Heath
Greg Heath 2012년 6월 30일
For the fitting net I assume you are using
x =[input(:,2:end); target(:,1:end-1)];
t = target(:,2:end);
size(input) = ?
size(target) = ?
numHidden = ?
net.divideParam = ?
R2trn ~ 0.985
R2val = ?
R2tst = ?
How is the timeseries net configured? Please include code.
Hope this helps.
Greg
  댓글 수: 3
Greg Heath
Greg Heath 2012년 7월 3일
You didn't answer my questions.
Greg
Sam harris
Sam harris 2012년 7월 3일
Hi Greg,
Thanks for your time, in answer to your questions:
size(input) = 12000 rows by 5 columns (data time series in rows)
numHidden = 10
net.divideParam = 70% used for training, 15% for validation, 15% for testing
R2trn ~ 0.985
R2val ~ 0.98
R2tst ~ 0.98
Code Used:
inputSeries = tonndata(Input,false,false);
targetSeries = tonndata(FOS,false,false);
Test1 = tonndata(Test1,false,false);
FOS1 = tonndata(FOS1,false,false);
inputDelays = 1:1;
feedbackDelays = 1:1;
hiddenLayerSize = 10;
net = narxnet(inputDelays,feedbackDelays,hiddenLayerSize);
eedback Pre/Post-Processing Functions
net.inputs{1}.processFcns = {'removeconstantrows','mapminmax'};
[inputs,inputStates,layerStates,targets] = preparets(net,inputSeries,{},targetSeries);
net.divideFcn = 'dividerand';
net.divideMode = 'value';
net.divideParam.trainRatio = 70/100;
net.divideParam.valRatio = 15/100;
net.divideParam.testRatio = 15/100;
net.trainFcn = 'trainlm'; % Levenberg-Marquardt
net.performFcn = 'mse'; % Mean squared error
net.plotFcns = {'plotperform','plottrainstate','plotresponse', ...
'ploterrcorr', 'plotinerrcorr'};
[net,tr] = train(net,inputs,targets,inputStates,layerStates);
outputs = net(inputs,inputStates,layerStates);
errors = gsubtract(targets,outputs);
performance = perform(net,targets,outputs)
trainTargets = gmultiply(targets,tr.trainMask);
valTargets = gmultiply(targets,tr.valMask);
testTargets = gmultiply(targets,tr.testMask);
trainPerformance = perform(net,trainTargets,outputs)
valPerformance = perform(net,valTargets,outputs)
testPerformance = perform(net,testTargets,outputs)
save('my_network','net'); %Saves the network
delay=1;
inputSeriesPred = [inputSeries(end-delay+1:end),Test1];
targetSeriesPred = [targetSeries(end-delay+1:end),FOS1];
[Xs,Xi,Ai,Ts] = preparets(net,inputSeriesPred,{},targetSeriesPred);
yPred = net(Xs,Xi,Ai);
perf = perform(net,yPred,FOS1);
yPred=cell2mat(yPred);
ave=mean(FOSA);
for i=1:length(yPred);
D(i,1)=(FOSA(i,1)-ave)^2;
SSTOT=sum(D);
D1(i,1)=(yPred(1,i)-FOSA(i,1))^2;
SSERR=sum(D1);
end
RSOS=1-(SSERR/SSTOT);
RSOSif true
% code
end
The network appears to be training fine until I use a closeloop network to test it.
Once again many thanks for your help,
Sam

댓글을 달려면 로그인하십시오.

카테고리

Help CenterFile Exchange에서 Deep Learning Toolbox에 대해 자세히 알아보기

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by