Curve fitting for non-linear data
조회 수: 7 (최근 30일)
이전 댓글 표시
I am trying to fit some data using lsqcurvefit in MATLAB but I am fairly new to this area.
xdata1 = [0 60 660 1250];
ydata1 = [0 18 23 31];
In the image below, the red line is the fit I want to achieve. Sadly, Polyfit does not provide suitable results.

How can I achieve this fit? Thank you in advance!
댓글 수: 0
채택된 답변
Matt J
2018년 10월 11일
I believe piece-wise linear fitting was in the scope of Bruno's free-knot spline fitting package,
추가 답변 (2개)
Chaoyu Zhang
2018년 10월 11일
편집: Chaoyu Zhang
2018년 10월 15일
You can use the method described below,
The target equation (3rd order or maybe higher) is
y = a*x.^3 + b*x.^2 + c*x + d;
A * p = y;
p is the parameters of the equation,
p = [a;b;c;d]
A is the matrix made of x.^3,x.^2,x,1,
A = [x(1).^3 x(1).^2 x(1) 1; ... ; x(n).^3 x(n).^2 x(n) 1]
y is the vector made of y,
y = [y(1); ... ;y(n)];
p = (A.'*A)^(-1)*A.'*y;
Now you get the parameters you need.
댓글 수: 5
Matt J
2018년 10월 15일
편집: Matt J
2018년 10월 15일
Well, the poorer accuracy comes from the inversion of (A.'*A), since cond(A.'*A) is the square of cond(A).
>> A=rand(1000,100);
>> cond(A.'*A)
ans =
632.4462
>> cond(A)
ans =
25.1485
When solving with mldivide(), the QR decomposition is used, which avoids this inversion. With A=Q*R,
(A.'*A)^(-1)*A.'*y
=(R.'*R)^(-1)*R.'*Q.'*y
=R^(-1)*Q.'*y
So, the inversion involves only R^(-1) and cond( R )=cond(A).
Matt J
2018년 10월 15일
편집: Matt J
2018년 10월 15일
Here is a test showing the increased error sensitivity of inv(A.'*A)*(A.'*y).
N=1000;
M=15;
A=vander(linspace(1,3.3,M)) + eye(M);
xt=rand(M,1);
yt=A*xt;
y=yt+randn(M,N)*1e-6;
x1=inv(A.'*A)*(A.'*y);
x2=A\y;
Error1=mean( sqrt(sum((x1-xt).^2)) )
Error2=mean( sqrt(sum((x2-xt).^2)) )
should give something like
Error1 =
5.0094
Error2 =
2.8313e-04
Image Analyst
2018년 10월 11일
You cannot get that unless you put in a model curve for that shape. Otherwise functions are not going to know that it's a piecewise linear fit or some sharply kinked log function or whatever. And having more data points would help too. Then you can use fitnlm.
I'm attaching several examples for piecewise linear fit and non-linear fits.
댓글 수: 4
Alex Sha
2022년 1월 29일
For three order of polyfit: y = p1+p2*x+p3*x^2+p4*x^3
Root of Mean Square Error (RMSE): 5.67944047963309E-15
Sum of Squared Residual: 1.2902417664678E-28
Correlation Coef. (R): 1
R-Square: 1
Parameter Best Estimate
---------- -------------
p1 3.92787554473843E-15
p2 0.340654276995852
p3 -0.000698994200659206
p4 3.57048623250019E-7

while, if taking function as: y = p1*x/(p2+x)^2-p3*x
Root of Mean Square Error (RMSE): 0
Sum of Squared Residual: 0
Correlation Coef. (R): 1
R-Square: 1
Parameter Best Estimate
---------- -------------
p1 9035.3274708592
p2 119.630504666011
p3 -0.0199834390844168

Obviously, the second function should be more reasonable than 3rd polyfit.
참고 항목
카테고리
Help Center 및 File Exchange에서 Get Started with Curve Fitting Toolbox에 대해 자세히 알아보기
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!