Binning of data except from histcounts?

조회 수: 1 (최근 30일)
Zara Khan
Zara Khan 2018년 10월 9일
댓글: Walter Roberson 2018년 11월 14일
I am a matlab R2014b user. Using histcounts for binning a dataset is not giving me the exact result. Is there any alternative for this ?
A = [0 0 1 1 1 0 0 0 0 1 0 0 0 1 0 1 0 1 0 0 0 1 1 1 1];
N = histcounts(X,6)
>>N =
6 0 2 0 0 2
This what I am getting every time.
A = [0 0 1 1 1 0 0 0 0 NaN NaN 1 0 0 0 1 0 1 0 1 0 0 0 1 1 1 1];
C = categorical(A,[1 0 NaN],{'yes','no','undecided'})
[N,Categories] = histcounts(C)
And for the above I am getting this error.
Error using histcounts Expected input number 1, x, to be one of these types:
numeric
Instead its type was categorical.
Error in histcounts (line 96) validateattributes(x,{'numeric'},{'real'}, mfilename, 'x', 1)

채택된 답변

Bruno Luong
Bruno Luong 2018년 10월 9일
ndivisions=4;
n = length(A);
partnum = floor(1+(0:n-1)/n*ndivisions);
n1 = accumarray(partnum(:),A(:)==1)
  댓글 수: 18
Zara Khan
Zara Khan 2018년 11월 14일
As each array is divided to 4 equal parts then from each part no of occrrence of 1's is being counted. Now I want to plot this total thing .
Walter Roberson
Walter Roberson 2018년 11월 14일
Sounds like you would calculate aa vector of the four counts and bar() that .

댓글을 달려면 로그인하십시오.

추가 답변 (2개)

Walter Roberson
Walter Roberson 2018년 10월 9일
histcounts did not support categorical back then.
Use the second output of ismember to get the bin number, which you can then histc or histcounts or accumarray (most efficient)
  댓글 수: 4
Zara Khan
Zara Khan 2018년 10월 9일
A = [0 0 1 1 1 0 0 0 0 NaN NaN 1 0 0 0 1 0 1 0 1 0 0 0 1 1 1 1];
>> [~, idx] = ismember(A, [1 0 nan]);
>> N = accumarray(idx(:), 1);
Error using accumarray
First input SUBS must contain positive integer subscripts.
Walter Roberson
Walter Roberson 2018년 10월 9일
Interesting, I did not realize that ismember would not handle nan. It does make a kind of sense, in that nan have the oddity that
nan == nan
is false.

댓글을 달려면 로그인하십시오.


Bruno Luong
Bruno Luong 2018년 10월 9일
A = [0 0 1 1 1 0 0 0 0 NaN NaN 1 0 0 0 1 0 1 0 1 0 0 0 1 1 1 1];
[U,~,J] = unique(A);
inan = find(isnan(U),1,'first');
if inan
U=U(1:inan);
J=min(J,inan);
end
counts = accumarray(J(:), 1);
[U(:),counts]
ans =
0 14
1 11
NaN 2
  댓글 수: 4
Zara Khan
Zara Khan 2018년 10월 9일
Actually I am getting a linear array every and that is not a predefined size. I want to divide that array into 4 or 8 equal parts and wants to count occurence of 1's from each parts . How can I implement this ?
Bruno Luong
Bruno Luong 2018년 10월 9일
Sorry but this is not binning, binning means all the 1s fall at the same place: at the position 1.
If you use the wrong wording you should expect get the wrong answer.

댓글을 달려면 로그인하십시오.

카테고리

Help CenterFile Exchange에서 Graphics Object Properties에 대해 자세히 알아보기

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by