STFT Spectrogram Recognize Linear Regression

조회 수: 2 (최근 30일)
Robert Worm
Robert Worm 2018년 9월 4일
댓글: Robert Worm 2018년 9월 4일
Hi Community,
this problem might be considered a low level pattern recognition. The starting dataset is an STFT spectrogram.
As you can see from the plot one signal is constant in FFT domain, the other in STFT domain - I believe this is called sparsity.
The two approximately orthogonal signals need to be seperated and converted back to time continuous signals (constant frequency and FMCW chirp).
One idea was to look for max values across frequency bins and look for concatenated regions across a certain time.
This way chirp slope could be determined.
Regards, Robert
  댓글 수: 1
Robert Worm
Robert Worm 2018년 9월 4일
To give an update, I started using Empirical Mode Decomposition which for my case seems to be more promising since I can easily replace data.
[imf,residual,info] = emd(data,'Interpolation','pchip');
As you can see IMF1 data has a varying frequency and constant frequency component. Is there a way to make adjustments to the first sifting stage?
The problem is the main part of the faulty signal is contained in IMF1 but is needed in IMF2 - seperated from the constant signal.

댓글을 달려면 로그인하십시오.

답변 (0개)

카테고리

Help CenterFile Exchange에서 Time-Frequency Analysis에 대해 자세히 알아보기

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by