Solving PDE of electrothermal coupling with f coefficient in stationary

조회 수: 6 (최근 30일)
I am trying to solve a electrothermal system(joule heating) in stationary by using solvepde. The PDEs are shown below.
Equation(1) is for the E-field in stationary, where phi is voltage potential and sigma is the electrical conductivity of the material. Equation(2) is the relation between temperature and voltage potential in stationary, where T is temperature and k is thermal conductivity.
%%E field for equation (1)
Emodel = createpde;
geometryFromEdges(Emodel,g);
Emesh = generateMesh(Emodel,'Hmax',0.8); % generate mesh
% dirichlet boundary condition for E-domain
applyBoundaryCondition(Emodel,'dirichlet','Edge',8,'u',20);
applyBoundaryCondition(Emodel,'dirichlet','Edge',7,'u',0);
applyBoundaryCondition(Emodel,'neumann','Edge',1:6,'q',0,'g',0);
% laplace equation
specifyCoefficients(Emodel,'m',0,...
'd',0,...
'c',1,...
'a',0,...
'f',0);
Eresults = solvepde(Emodel);
ElectroThermal coupling
ETmodel = createpde;
geometryFromEdges(ETmodel,g);
generateMesh(ETmodel,'Hmax',0.8); % generate mesh
applyBoundaryCondition(ETmodel,'dirichlet','Edge',8,'u',273.15);
applyBoundaryCondition(ETmodel,'dirichlet','Edge',7,'u',273.15);
applyBoundaryCondition(ETmodel,'neumann','Edge',1:6,'q',1/kappa,'g',h*273.15/kappa);
f = @(region,state) sigma.*(state.ux.^2 + state.uy.^2); % <--------------u is for T here,
but what should I do for letting this u represent
the potential voltage according to result of Emodel above?
% region.ux means partial u/ partial x in this case.
specifyCoefficients(ETmodel,'m',0,...
'd',0,...
'c',kappa,...
'a',0,...
'f',f);
ETresults = solvepde(ETmodel);
I want to let f be the right part of equation 2 (let u represent "phi" instead of T). or is there some essential way to represent the coupled PDE to solve?
Thank you in advance, Xing An.

채택된 답변

Alan Weiss
Alan Weiss 2018년 8월 27일
If I understand your question, you would like f to represent the interpolated squared gradient of the previous solution to Emodel. So write a function to use the interpolated gradients of the solution Eresults, such as
function fout = myf(region,state,Eresults,sigma)
[gradx,grady] = evaluateGradient(Eresults,region.x,region.y)
fout = sigma.*(gradx.^2 + grady.^2);
Set this function as your f coefficient after getting Eresults and sigma into your workspace:
f = @(region,state)myf(region,state,Eresults,sigma)
Alan Weiss
MATLAB mathematical toolbox documentation
  댓글 수: 4
Xing An
Xing An 2018년 8월 27일
Alan, thank you very much. The code works well.
ADSW121365
ADSW121365 2020년 6월 12일
Alan, is it possible given identical meshes for the two problems to avoid the interpolation step in this approach by using results.XGradients etc?

댓글을 달려면 로그인하십시오.

추가 답변 (0개)

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by