Punishing Term for Smoothing Optimization Results

조회 수: 3 (최근 30일)
Mathias Dirksmeier
Mathias Dirksmeier 2018년 8월 24일
댓글: Mathias Dirksmeier 2018년 8월 24일
Hi all,
this might be an interesting brainteaser: I am optimizing electric storage dispatch (fmincon solver) with a function to be optimized as follows:
fun = @(x)sum(x.*p)
,p is given as a price vector, x is the storage dispatch in kWh.
There are some constraints to this so that optimization results in a vector x. So far so good.
Now, plotting x reveals its jumping behavior (cp. attachment). However, I would rather have it smoothed just as or at least alike the price vector (Clearing Price, also cp. attachment). The jumping seems arbitrary (so far, there is no punishment for jumping).
How do I punish for jumping in my optimization function? I could not think of a way to include this into my constraints as I do not want to define strong constraints rather a little punishment (just strong enough to prevent jumping when it does not serve to optimality but still allow big leaps if necessary).
My idea so far: Add a punishment term to the optimization function like this:
fun = @(x)sum(x.*p+(x(n+1)-x(n))/1000)
That way, there should be a little punishment for all changes in x. The problem, that would require a loop in my optimization function and I have no idea if that's possible at all. I am really looking forward to your ideas and the following discussion.
Thanks in advance, Mathias

채택된 답변

Matt J
Matt J 2018년 8월 24일
fun = @(x) x(:).'*p(:) + beta*norm(diff(x)).^2 ;
  댓글 수: 3
Matt J
Matt J 2018년 8월 24일
편집: Matt J 2018년 8월 24일
The penalty term norm(diff(x)).^2 is the same as sum(x(n+1)-x(n))^2. It is a very traditional roughness penalty.
beta is a coefficient you must define to control the weight of the penalty term. The error message is because you have not defined it, so Matlab thinks you mean to invoke the command beta().
Mathias Dirksmeier
Mathias Dirksmeier 2018년 8월 24일
Thanks a lot, I got it! And it works!

댓글을 달려면 로그인하십시오.

추가 답변 (0개)

카테고리

Help CenterFile Exchange에서 Surrogate Optimization에 대해 자세히 알아보기

제품


릴리스

R2018a

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by