Regarding Multi-label transfer learning with googlenet

조회 수: 6 (최근 30일)
Balakrishnan Rajan
Balakrishnan Rajan 2018년 8월 22일
댓글: Tarily 2023년 6월 21일
I have a dataset with pictures with presence of objects of different classes. I want to perform a multilabel classification, which means I need to classify the pictures into different classes with the picture belonging to more than one class at the same time. That is, for pictures with objects of type A and type B, the net should output both the labels A and B.
If I am designing a CNN for this from scratch, I will have a sigmoid activation at the last layer. The number of output neurons will be equal to the number of classes with the output of each neuron giving 1 if the picture belongs to the particular class or 0 if not. However, there seems to be no provision for adding a sigmoid function and the Image datastore cannot hold binary vectors as the label. How do I overcome this?
  댓글 수: 1
SC P
SC P 2019년 10월 12일
@Balakrishnan Rajan ,how you have resolved this problem? ( how you did this?:defining classes which are unique combination of the previous class occurences). Is there any code of it

댓글을 달려면 로그인하십시오.

채택된 답변

Shounak Mitra
Shounak Mitra 2018년 8월 24일
We do not support sigmoid activation. You can use the softmax activation function. You don't need to define the neurons in the softmaxLayer. Define the no of neurons (= no of classes) you want in the fullyConnectedLayer. So, your network structure would be like:
inputLayer -- -- fullyConnectedLayer softmaxLayer ClassificationLayer
HTH Shounak
  댓글 수: 3
o.cefet cefet
o.cefet cefet 2020년 5월 29일
Hello all?
As the images do not have a single class, how can I build the ImageDataStore, because the images cannot be separated by folders, that is, I cannot endow "Labels" with "Folders".
The images are in the same folder and a CSV file destines them. Like this:
Image, Class A, Class B, Class C, Class D
00000001_000.png, 1,1,0,0
00000001_001.png, 1,1,0,1
00000001_002.png, 0,0,0,1
00000002_000.png, 0,0,0,0
00000003_000.png, 0,0,1, -1
00000003_001.png, 0, -1,0,1
00000003_002.png, 1,0,0,0
00000003_003.png, 0,0,0,1
00000003_004.png, 0,1,0,0
00000003_005.png, 0,0,1,0
00000003_006.png, 0,1,1,0
00000003_007.png, 1,0,0,1
00000004_000.png, 0,0,1,0
00000005_000.png, 0,1,0,0
00000005_001.png, -1, -1,1,0
00000005_002.png, 0.1, -1.0
00000005_003.png, 0,0,0,1
00000005_004.png, 0,0,1,0
00000005_005.png, 0,1,0,0
00000005_006.png, 0,0, -1,1
00000005_007.png, 0,1,0, -1
00000006_000.png, 0,0,0,1
00000007_000.png, 0,1,0,0
00000008_000.png, 0,0,1,0
00000008_001.png, 0,0,0,1
......
......
......
......
SC P
SC P 2020년 7월 7일
@Kira, Have you found any solution of it? if yes please let me know. Thanks

댓글을 달려면 로그인하십시오.

추가 답변 (3개)

Antonio Quvera
Antonio Quvera 2019년 5월 21일
편집: Antonio Quvera 2019년 5월 21일
I'm also interested in this application (i.e. multi-label classification using CNN/LSTM). Any news? Does the latest deep learning toolbox resolve this issue?

cui,xingxing
cui,xingxing 2019년 5월 14일
Can I define multiple softmaxLayer at the end of the network? Each softmaxLayer is independent of each other, and each layer is used to classify a label so that there can be multiple loss functions, shared by the previous convolutional layer? But how do you enter the network goals?
  댓글 수: 1
Tarily
Tarily 2023년 6월 21일
Do you have solven it? if yes please let me know. Thanks:)

댓글을 달려면 로그인하십시오.


Greg Heath
Greg Heath 2018년 12월 22일
Decades old solution:
Divide each output by the sum to obtain the relative probability of each class
Hope this helps.
Thank you for formally accepting my answer
Greg
  댓글 수: 4
Greg Heath
Greg Heath 2019년 1월 29일
To Kira:
My point was:
If you do not use softmax, the sum is not constrained to be 1 !
Greg
o.cefet cefet
o.cefet cefet 2020년 5월 29일
Hello all?
As the images do not have a single class, how can I build the ImageDataStore, because the images cannot be separated by folders, that is, I cannot endow "Labels" with "Folders".
The images are in the same folder and a CSV file destines them. Like this:
Image, Class A, Class B, Class C, Class D
00000001_000.png, 1,1,0,0
00000001_001.png, 1,1,0,1
00000001_002.png, 0,0,0,1
00000002_000.png, 0,0,0,0
00000003_000.png, 0,0,1, -1
00000003_001.png, 0, -1,0,1
00000003_002.png, 1,0,0,0
00000003_003.png, 0,0,0,1
00000003_004.png, 0,1,0,0
00000003_005.png, 0,0,1,0
00000003_006.png, 0,1,1,0
00000003_007.png, 1,0,0,1
00000004_000.png, 0,0,1,0
00000005_000.png, 0,1,0,0
00000005_001.png, -1, -1,1,0
00000005_002.png, 0.1, -1.0
00000005_003.png, 0,0,0,1
00000005_004.png, 0,0,1,0
00000005_005.png, 0,1,0,0
00000005_006.png, 0,0, -1,1
00000005_007.png, 0,1,0, -1
00000006_000.png, 0,0,0,1
00000007_000.png, 0,1,0,0
00000008_000.png, 0,0,1,0
00000008_001.png, 0,0,0,1
......
......
......
......

댓글을 달려면 로그인하십시오.

카테고리

Help CenterFile Exchange에서 Image Data Workflows에 대해 자세히 알아보기

제품


릴리스

R2018a

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by