MMSE Channel Estimation for Comb type pilots

조회 수: 6 (최근 30일)
Amjad Aziz
Amjad Aziz 2018년 8월 20일
답변: Sami Hadeyya 2021년 1월 17일
I am working on a project for minimum mean square error (MMSE) channel estimation using comb-type pilot aided for OFDM system. I wrote the following code but I could not get the required results. Where I get the BER of the LS identical to the MMSE BER!!!
clear; clc;
Nsc = 256; % OFDM symbol size (Number of subcarriers).
M = 16; % Modulation order
Nsmb = 100; % Number of OFDM symbols to be simulated
Ne = 100; % Number of bits in error
Ncp = Nsc/4;% Cyclic Prefix Length
Lh = 4; % Channel Length
Lp = 4; % pilot interval
Np = Nsc/Lp; % total number of Pilots
% Pilot Locations
PL = 1:Lp:Nsc; % location of pilots
DL = setxor(1:Nsc,PL); % location of data
Pp = 4; % Pilot Power
str=-10;
stp=4; %SNR starts at -10 dB, with step size [dB] = stp
Esnr=40; % Last value of SNR [dB] = Esnr
c = 0; % steps counter
NSteps = length(str:stp:Esnr);
EbNo_vector=str:stp:Esnr;
berRslt_S=zeros(size(EbNo_vector));
berRslt_LS=zeros(size(EbNo_vector));
berRslt_MMSE=zeros(size(EbNo_vector));
for snr=str:stp:Esnr
c =c+1;
%%Monte Carlo Simulation loop
disp(['STEP ',num2str(c),' of ',num2str(length(str:stp:Esnr)),' :Processing SNR = ',num2str(snr)]);
nEr_S = 0; % Number of collected errors
nEr_LS = 0; % Number of collected errors
nEr_MMSE = 0; % Number of collected errors
nSmb = 0; % Number of simulated OFDM symbols
while ((nEr_S < Ne) && (nSmb < Nsmb))
% Random Channel Generation
h= randn(1,Lh) + 1j * randn(1,Lh);
h = h./norm(h); % normalization
H = fft(h.',Np);
% Transmitter
Dg=randi([0 M-1],1,Nsc); % Data Generation
Dmod=qammod(Dg,M,'UnitAveragePower',true); % Baseband modulation (mapping)
% Serial To Parallel
Dmod_P=Dmod.';
Dmod_P2=Dmod_P;
% Pilot Insertion
Dmod_P2(PL) = Pp * Dmod_P2(PL);
% Implementing IFFT
d_mod_P=(1/sqrt(Nsc))*ifft(Dmod_P,Nsc);
d_mod_P2=(1/sqrt(Nsc))*ifft(Dmod_P2,Nsc);
% Parallel To Serial
dAM_mod_S=d_mod_P.';
dAM_mod_S2=d_mod_P2.';
% Cyclic Prefix Insertion (GII)
d_mod_S_GII = [dAM_mod_S(Nsc- Ncp + 1 : Nsc),dAM_mod_S];
d_mod_S_GII2 = [dAM_mod_S2(Nsc- Ncp + 1 : Nsc),dAM_mod_S2];
% Passing Through the Channel
d_mod_S_GII_ch = filter(h,1,d_mod_S_GII2); % channel effect
% Adding Noise using AWGN
d_mod_noisy_S_GII=awgn(d_mod_S_GII,snr,'measured');
d_mod_noisy_S_GII_ch=awgn(d_mod_S_GII_ch,snr,'measured');
% Cyclic Prefix Removal (GIR)
d_mod_noisy_S_GIR=d_mod_noisy_S_GII(Ncp+1:Nsc+Ncp);
d_mod_noisy_S_GIR_ch=d_mod_noisy_S_GII_ch(Ncp+1:Nsc+Ncp);
% Serial To Parallel
d_mod_noisy_P_GIR=d_mod_noisy_S_GIR.';
d_mod_noisy_P_GIR_ch=d_mod_noisy_S_GIR_ch.';
% Amplitude demodulation (DFT using fast version FFT)
amdemod_P_GIR=(sqrt(Nsc))*fft(d_mod_noisy_P_GIR,Nsc);
amdemod_P_GIR_ch=(sqrt(Nsc))*fft(d_mod_noisy_P_GIR_ch,Nsc);
%%Channel Estimation
% Extracting received pilots
TxPilots = Dmod_P2(PL); % trnasmitted pilots
RxPilots = amdemod_P_GIR_ch(PL); % received pilots
% LS Channel Estimation
Hp_LS= RxPilots./TxPilots;
% MMSE Channel Estimation
R_HH = H*H';%toeplitz(H);
XX = toeplitz(TxPilots);
powerDB = 10*log10(var(RxPilots)); % Calculate Tx signal power
sigmI = 10.^(0.1*(powerDB)); % Calculate the noise variance
G=(R_HH)*(R_HH+(1/sigmI)*(XX))^(-1);
Hmmse=((G)*(Hp_LS));
% Channel Estimation at the Data Subcarriers
HData_LS=interp1(PL,Hp_LS,1:Nsc,'spline');
HData_MMSE = interp1(PL,Hmmse,1:Nsc,'spline');
%%Equalization
Deq_LS =((amdemod_P_GIR_ch.')./HData_LS);
Deq_MMSE =((amdemod_P_GIR_ch.')./HData_MMSE);
% Detection (De-Mapping)
y_P=qamdemod(amdemod_P_GIR,M,'UnitAveragePower',true);
y_P_Eqz_LS=qamdemod(Deq_LS.',M,'UnitAveragePower',true);
y_P_Eqz_MMSE=qamdemod(Deq_MMSE.',M,'UnitAveragePower',true);
% Parallel To Serial
y_S=y_P.';
y_S_Eqz_LS=y_P_Eqz_LS.';
y_S_Eqz_MMSE=y_P_Eqz_MMSE.';
%%Removing Pilots from received data and original data
D_no_pilots=Dg(DL); % removing pilots from D
Rec_d_LS=y_S_Eqz_LS(DL); % removing pilots from d_received_chann_LS
Rec_d_MMSE=y_S_Eqz_MMSE(DL); % removing pilots from d_received_chann_MMSE
% BER Calculation
[n_S, r_S]=biterr(Dg,y_S);
[n_LS, r_LS]=biterr(D_no_pilots,Rec_d_LS);
[n_MMSE, r_MMSE]=biterr(D_no_pilots,Rec_d_MMSE);
nEr_S=nEr_S+r_S;
nEr_LS=nEr_LS+r_LS;
nEr_MMSE=nEr_MMSE+r_MMSE;
nSmb=nSmb+1;
end
berRslt_S(c)=nEr_S/(log2(M)*nSmb);
berRslt_LS(c)=nEr_LS/(log2(M)*nSmb);
berRslt_MMSE(c)=nEr_MMSE/(log2(M)*nSmb);
end
figure;
snr=str:stp:Esnr;
semilogy(snr,berRslt_S,'-b','linewidth',1,'markerfacecolor','b','markersize',8,'markeredgecolor','b');grid;hold on;
semilogy(snr,berRslt_LS,'-k','linewidth',1,'markerfacecolor','k','markersize',8,'markeredgecolor','k');
semilogy(snr,berRslt_MMSE,'-g','linewidth',1,'markerfacecolor','g','markersize',8,'markeredgecolor','g');
title('OFDM Bit Error Rate vs SNR');
ylabel('Bit Error Rate');
xlabel('SNR [dB]');
legend('FFT','LS','MMSE');

답변 (2개)

Abby__DSP
Abby__DSP 2020년 5월 4일
Hello,
Can you explain this line : powerDB = 10*log10(var(RxPilots)); % Calculate Tx signal power
it is not ok with the comment you made

Sami Hadeyya
Sami Hadeyya 2021년 1월 17일
Does it work well this code?
please reply.

카테고리

Help CenterFile Exchange에서 Propagation and Channel Models에 대해 자세히 알아보기

제품


릴리스

R2017a

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by