reshape matrix without loop

조회 수: 1 (최근 30일)
Rahel Braun
Rahel Braun 2018년 8월 7일
댓글: Rahel Braun 2018년 8월 9일
I want to change the matrix such that the first and second array are the panes of the final matrix.
That is I want to transform this
1 1 5
1 2 6
1 3 7
2 1 8
2 2 9
into this
5 6 7
8 9 NaN
I know how to do it brute force with a loop:
d = [1 1 1 2 2]';
g = [1 2 3 1 2]';
v = [5 6 7 8 9]';
A = [d g v];
for i = 1:max(d)
M1=A(d == i,:);
for j = 1 :max(g)
M2=M1(M1(:,2) == j,:);
B(i,j) =mean(M2(:,3));
end
end
However, are there more time-saving ways?
  댓글 수: 1
Stephen23
Stephen23 2018년 8월 9일
"However, are there more time-saving ways?"
Yes, see Jos's answer.

댓글을 달려면 로그인하십시오.

채택된 답변

Jos (10584)
Jos (10584) 2018년 8월 9일
A simple one-liner would do, I think, letting accumarray do all the work:
A = [ 1 1 5
1 2 6
1 3 7
2 1 8
2 2 9 ]
B = accumarray(A(:,[1 2]), A(:,3), [], [], NaN)
% 5 6 7
% 8 9 NaN
  댓글 수: 3
Rik
Rik 2018년 8월 9일
True, except for the requirement of calculating the mean for any duplicate, so it becomes this:
A = [ 1 1 5
1 2 6
1 3 7
2 1 8
2 2 7
2 2 9 ]
B = accumarray(A(:,[1 2]), A(:,3), [], @mean, NaN)
Rahel Braun
Rahel Braun 2018년 8월 9일
Very elegant, that reduces the size of my m-file a lot :) Thank you all for the quick inputs

댓글을 달려면 로그인하십시오.

추가 답변 (2개)

Fangjun Jiang
Fangjun Jiang 2018년 8월 7일
a=[ 1 1 5
1 2 6
1 3 7
2 1 8
2 2 9];
MatrixSize=max(a(:,1:2));
b=nan(MatrixSize);
b(sub2ind(MatrixSize,a(:,1),a(:,2)))=a(:,3)
  댓글 수: 1
Rahel Braun
Rahel Braun 2018년 8월 7일
Perfect thank you, that's what I wanted.

댓글을 달려면 로그인하십시오.


Rik
Rik 2018년 8월 7일
편집: Rik 2018년 8월 7일
I now wrote it with accumarray, without needing the call to unique. I also added a part that handles any empty positions (I removed the 1,2 position).
d = [1 1 2 2 2]';
g = [1 3 1 2 2]';
v = [5 7 8 9 7]';
%pre-allocate correct size output as NaN
out=NaN(max(d),max(g));
%convert subs to linear indices
ind=sub2ind(size(out),d,g);
%compute mean for each position (taking care of duplicates
means = accumarray(ind,v,[],@nanmean);
%paste into output array
out(1:numel(means))=means;
%take care of skipped values (replace 0 by NaN)
%(ismembc is way faster than ismember, and works best with 2 sorted arrays)
missing=find(~ismembc(1:numel(means),sort(ind)));
out(missing)=NaN;
Original post:
I'm assuming you want to calculate the mean for any duplicates. The code to remove duplicates could be further optimized.
d = [1 1 1 2 2]';
g = [1 2 3 1 2]';
v = [5 6 7 8 9]';
%pre-allocate correct size output as NaN
out=NaN(max(d),max(g));
%convert subs to linear indices
ind=sub2ind(size(out),d,g);
%sort indices and values
[ind,order]=sort(ind);v=v(order);
%check for double assignments
while any(diff(ind)==0)
%compute mean
current_index=ind(find(diff(ind)==0,1));
L=ind==current_index;
new_value=mean(v(L));
%remove old values and put back the new one
ind(L)=[];v(L)=[];
ind=[ind;current_index];v=[v;new_value]; %#ok<AGROW>
end
%write to matrix
out(ind)=v;
  댓글 수: 6
Rahel Braun
Rahel Braun 2018년 8월 8일
Yes, I run it with my data but it takes ages. However, the new one you posted without loop works quick and great. Thank you
Rik
Rik 2018년 8월 8일
You're welcome. If this solves your issue better than Fangjun's answer, you can un-accept that one and accept this one. (he will still keep the reputation points)

댓글을 달려면 로그인하십시오.

카테고리

Help CenterFile Exchange에서 Performance and Memory에 대해 자세히 알아보기

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by