Linear regression model with fitlm

조회 수: 5 (최근 30일)
Marianna
Marianna 2018년 8월 7일
댓글: Star Strider 2018년 8월 7일
I have two arrays and I am doing a weighted correlation with the function fitlm.
If I write:
tbl = table(ones(9,1),a(:),b(:),'VariableNames',{'Weight','array1','array2'});
correlation = fitlm(tbl)
I get:
correlation =
Linear regression model: map2 ~ 1 + Weight + map1
Estimated Coefficients: Estimate SE tStat pValue ______ _____ ______ ______
(Intercept) 0.66696 0.24971 2.671 0.036979
Weight 0 0 NaN NaN
map1 -0.22041 0.39988 -0.55119 0.60141
Number of observations: 9, Error degrees of freedom: 7 Root Mean Squared Error: 0.292 R-squared: 0.0416, Adjusted R-Squared -0.0953 F-statistic vs. constant model: 0.304, p-value = 0.599
In correlation I can find almost all the values printed in the workspace, with the exeption of the p-value = 0.599
Why? Where is it and what is it?
Thank you.

채택된 답변

Star Strider
Star Strider 2018년 8월 7일
You may have to do a separate anova call to get it:
Anova = anova(correlation);
AnovaP = Anova.pValue(2);
That works for your model.
(I usually am interested in the coefficient statistics, that are generally easier to recover.)
  댓글 수: 2
Marianna
Marianna 2018년 8월 7일
That works, thank you.
Yes, my problem was to check the significance of the correlation.
Star Strider
Star Strider 2018년 8월 7일
My pleasure.
If my Answer helped you solve your problem, please Accept it!

댓글을 달려면 로그인하십시오.

추가 답변 (0개)

카테고리

Help CenterFile Exchange에서 Analysis of Variance and Covariance에 대해 자세히 알아보기

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by