Linear regression model with fitlm
조회 수: 5 (최근 30일)
이전 댓글 표시
I have two arrays and I am doing a weighted correlation with the function fitlm.
If I write:
tbl = table(ones(9,1),a(:),b(:),'VariableNames',{'Weight','array1','array2'});
correlation = fitlm(tbl)
I get:
correlation =
Linear regression model: map2 ~ 1 + Weight + map1
Estimated Coefficients: Estimate SE tStat pValue ______ _____ ______ ______
(Intercept) 0.66696 0.24971 2.671 0.036979
Weight 0 0 NaN NaN
map1 -0.22041 0.39988 -0.55119 0.60141
Number of observations: 9, Error degrees of freedom: 7 Root Mean Squared Error: 0.292 R-squared: 0.0416, Adjusted R-Squared -0.0953 F-statistic vs. constant model: 0.304, p-value = 0.599
In correlation I can find almost all the values printed in the workspace, with the exeption of the p-value = 0.599
Why? Where is it and what is it?
Thank you.
댓글 수: 0
채택된 답변
Star Strider
2018년 8월 7일
You may have to do a separate anova call to get it:
Anova = anova(correlation);
AnovaP = Anova.pValue(2);
That works for your model.
(I usually am interested in the coefficient statistics, that are generally easier to recover.)
댓글 수: 2
추가 답변 (0개)
참고 항목
카테고리
Help Center 및 File Exchange에서 Analysis of Variance and Covariance에 대해 자세히 알아보기
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!