Correct weight Initialization in CNN
조회 수: 8 (최근 30일)
이전 댓글 표시
When a very deep DAG network is built from scratch, the initialization of the weights made by matlab is not very good since it presents a vanishing gradient problem which causes the CNN not to learn.
What is the function with which Matlab does the initiation of CNN weights?
Why do you implement initialization functions in Matlab such as XAVIER or RELU AWARE SCALALED?
Thank you for your answers.
댓글 수: 2
Greg Heath
2018년 7월 31일
I do not understand
"Why do you implement initialization functions in Matlab such as XAVIER or RELU AWARE SCALALED?"
Please explain.
Greg
채택된 답변
Maria Duarte Rosa
2019년 7월 5일
편집: Maria Duarte Rosa
2019년 7월 5일
In R2019a, the following weight initializers are available (including a custom initializer via a function handle):
'glorot' (default) | 'he' | 'orthogonal' | 'narrow-normal' | 'zeros' | 'ones' | function handle
Glorot is also know as Xavier initializer.
Here is a page comparing 3 initializers when training LSTMs:
I hope this helps,
Maria
댓글 수: 0
추가 답변 (2개)
Andres Ramirez
2018년 7월 31일
댓글 수: 1
Greg Heath
2018년 8월 1일
편집: Greg Heath
2018년 8월 1일
Do you have a reference for
RELA AWARE SCALALED
I have no idea what this is.
Thanks
Greg
fareed jamaluddin
2018년 8월 4일
I think you can take a look at this example https://www.mathworks.com/help/images/single-image-super-resolution-using-deep-learning.html
I am also looking for a way on weight initialization options, you can see in the example it create the initialization with He method for every conv layer.
댓글 수: 0
참고 항목
카테고리
Help Center 및 File Exchange에서 Image Data Workflows에 대해 자세히 알아보기
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!