Multivariate nonlinear regression model fitting

조회 수: 61 (최근 30일)
Jorge
Jorge 2018년 7월 6일
편집: Anton Semechko 2018년 7월 6일
I apologize since I am new to matlab
I have built a multivariate model to describe experimental data and I am trying to set up a nonlinear regression fitting to extract parameters for the model.
The model has two dependent variables that depend nonlinearly on two independent variables The model has three parameters.
I found the mvregress function, but as I understand it, it is a multivariate linear regression, which does not apply to my problem.
Thank you in advance for any help

채택된 답변

Anton Semechko
Anton Semechko 2018년 7월 6일
편집: Anton Semechko 2018년 7월 6일
If the function you are trying to fit is linear in terms of model parameters, you can estimate these parameters using linear least squares ( 'lsqlin' documentation). If there is a nonlinear relashionship between model parameters and the function, use nonlinear least squares ( 'lsqnonlin' documentation). For example, F(x,y,c1,c2,c3)=c1*x^2 + c2*exp(y) + c3*cos(x-y), is nonlinear in terms of (x,y), but is a linear function of (c1,c2,c3) (i.e., model parameters).
  댓글 수: 6
Jorge
Jorge 2018년 7월 6일
I see, fantastic! Thank you!
If I can ask further, is there a simple way to obtain confidence intervals for the parameters? maybe using a bootstrap method? Thank you!
Anton Semechko
Anton Semechko 2018년 7월 6일
편집: Anton Semechko 2018년 7월 6일
Bootstraping is one option. Another option is to use jack-knife (i.e., leave-one-out cross-validation). Although if you have a large dataset, boostraping may be a more effective option (from computational perspective).

댓글을 달려면 로그인하십시오.

추가 답변 (0개)

카테고리

Help CenterFile Exchange에서 Resampling Techniques에 대해 자세히 알아보기

제품


릴리스

R2017a

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by