
Hello, currently I'm working on outlier detection techniques. Can I detect outliers in multivariate datasets with three-sigma rule? If yes, then how?
조회 수: 2 (최근 30일)
이전 댓글 표시
m=mean(meas)
m =
5.8433 3.0573 3.7580 1.1993
>> d=std(m)
d =
1.9185
>> d=3*std(m)
d =
5.7555
댓글 수: 0
답변 (1개)
Adam Danz
2018년 6월 24일
Are you asking how to do this programmatically or conceptually? You want to detect all values that are greater than three standard deviations from the mean.
Here's a demo with fake data to work through conceptually. In the plot, data outside of 3sd along the y axis are circled.
%fake data
rng(180)
d = normrnd(166,42,1,5000);
m = mean(d);
sd = std(d);
outliers = false(size(d));
outliers(d < m-sd*3) = true;
outliers(d > m+sd*3) = true;
figure
t = 1:length(d);
plot(t, d, 'b.')
hold on
plot(t(outliers), d(outliers), 'ro')
rh = refline(0,m);
set(rh, 'color', 'm')
rh2 = refline(0,m+sd*3);
rh3 = refline(0,m-sd*3);
set([rh2,rh3], 'color', 'm', 'linestyle', '--')
legend('data', 'outliers', 'mean', '3rd sd')

댓글 수: 1
Image Analyst
2018년 6월 24일
This:
outliers = false(size(d));
outliers(d < m-sd*3) = true;
outliers(d > m+sd*3) = true;
could be simplified to this:
outliers = abs(d - m) > sd * 3;
참고 항목
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!