Make predictions on new data using a SVM

조회 수: 6 (최근 30일)
NC
NC 2018년 6월 20일
댓글: NC 2018년 6월 20일
I trained a SVM classifcation model using "fitcsvm" function and tested with the test data set. Now I want to use this model to predict the classes of new (previously unseen) data. What should be done to predict new data ?
Following is the code I used.
load FeatureLabelsNum.csv
load FeatureOne.csv
X = FeatureOne(1:42,:);
y = FeatureLabelsNum(1:42,:);
%dividing the dataset into training and testing
rand_num = randperm(42);
%training Set
X_train = X(rand_num(1:34),:);
y_train = y(rand_num(1:34),:);
%testing Set
X_test = X(rand_num(34:end),:);
y_test = y(rand_num(34:end),:);
%preparing validation set out of training set
c = cvpartition(y_train,'k',5);
SVMModel =
fitcsvm(X_train,y_train,'Standardize',true,'KernelFunction','RBF',...'KernelScale','auto','OutlierFraction',0.05);
CVSVMModel = crossval(SVMModel);
classLoss = kfoldLoss(CVSVMModel)
classOrder = SVMModel.ClassNames
sv = SVMModel.SupportVectors;
figure
gscatter(X_train(:,1),X_train(:,2),y_train)
hold on
plot(sv(:,1),sv(:,2),'ko','MarkerSize',10)
legend('Resampled','Non','Support Vector')
hold off

채택된 답변

Stephan
Stephan 2018년 6월 20일
편집: Stephan 2018년 6월 20일
Hi,
use the
predict
command for this purpose. See the documentation for predict command for examples how to do.
Best regards
Stephan

추가 답변 (0개)

카테고리

Help CenterFile Exchange에서 Classification에 대해 자세히 알아보기

태그

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by