Make predictions on new data using a SVM
조회 수: 6 (최근 30일)
이전 댓글 표시
I trained a SVM classifcation model using "fitcsvm" function and tested with the test data set. Now I want to use this model to predict the classes of new (previously unseen) data. What should be done to predict new data ?
Following is the code I used.
load FeatureLabelsNum.csv
load FeatureOne.csv
X = FeatureOne(1:42,:);
y = FeatureLabelsNum(1:42,:);
%dividing the dataset into training and testing
rand_num = randperm(42);
%training Set
X_train = X(rand_num(1:34),:);
y_train = y(rand_num(1:34),:);
%testing Set
X_test = X(rand_num(34:end),:);
y_test = y(rand_num(34:end),:);
%preparing validation set out of training set
c = cvpartition(y_train,'k',5);
SVMModel =
fitcsvm(X_train,y_train,'Standardize',true,'KernelFunction','RBF',...'KernelScale','auto','OutlierFraction',0.05);
CVSVMModel = crossval(SVMModel);
classLoss = kfoldLoss(CVSVMModel)
classOrder = SVMModel.ClassNames
sv = SVMModel.SupportVectors;
figure
gscatter(X_train(:,1),X_train(:,2),y_train)
hold on
plot(sv(:,1),sv(:,2),'ko','MarkerSize',10)
legend('Resampled','Non','Support Vector')
hold off
댓글 수: 0
추가 답변 (0개)
참고 항목
카테고리
Help Center 및 File Exchange에서 Classification에 대해 자세히 알아보기
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!